
Vol.:(0123456789)

SN Computer Science (2020) 1:15
https://doi.org/10.1007/s42979-019-0013-0

SN Computer Science

ORIGINAL RESEARCH

An Experiment with Denotational Semantics

Andrzej Blikle1

Received: 19 April 2019 / Accepted: 15 July 2019
© The Author(s) 2019

Abstract
The paper is devoted to showing how to systematically design a programming language in “reverse order”, i.e., from deno-
tations to syntax. This construction is developed in an algebraic framework consisting of three many-sorted algebras: of
denotations, of an abstract syntax and of a concrete syntax. These algebras are constructed in such a way that there is a unique
homomorphism from concrete syntax to denotations, which constitutes the denotational semantics of the language. Besides
its algebraic framework, the model is set-theoretic, i.e., the denotational domains are just sets, rather than Scott’s reflexive
domains. The method is illustrated by a layer-by-layer development of a virtual language Lingua: an applicative layer, an
imperative layer (with recursive procedures) and an SQL layer where Lingua is regarded as an API (Application Program-
ming Interface) for an SQL engine. The latter is given a denotational semantics as well. Mathematically, the model is based
on so-called naive denotational semantics (Blikle and Tarlecki in Information processing 83. Elsevier Science Publishers
B.V., North-Holland, 1983), Many-sorted algebras (Goguen et al. in J ACM 24:68–95, 1977), equational grammars (Blikle
in Inform Control 21:134–147, 1972), and a three-valued predicate calculus based on a three-valued proposition calculus
of McCarthy (A basis for a mathematical theory of computation, North Holland, 1967). Three-valued predicates provide an
adequate framework for error-handling mechanisms and also for the development of a Hoare-like logic with clean termina-
tion (Blikle in Acta Inform 16:199–217, 1981) for Lingua. That logic is used in Blikle and Chrząstowski-Wachtel (Complete
Unambiguous, https​://doi.org/10.13140​/rg.2.2.27499​.39201​/3, 2019) for the development of correctness-preserving pro-
grams’ constructors. This issue is, however, not covered by the paper. The langue is equipped with a strong typing mechanism
which covers basic types (numbers, Booleans, etc.), lists, arrays, record and their arbitrary combinations plus SQL-like types:
rows, tables, and databases. The model of types includes SQL-integrity constraints.

Keywords  Set-theoretic denotational semantics · Many-sorted algebras · Three-valued predicate calculus · A denotational
model of types · Abstract syntax · Concrete syntax

Introduction

Reversing the Traditional Order of Things

The problem of mathematically provable program correct-
ness appeared for the first time in a work of Alan Turing [29]
published in conference proceedings On High-Speed Calcu-
lating Machines, which took place at Cambridge University
in 1949. Later for several decades, that subject was investi-
gated usually as proving program correctness, but the devel-
oped methods never became everyday tools for software

engineers. Finally, these efforts were practically abandoned
which has been commented in 2016 by the authors of a mon-
ography Deductive Software Verification [1]:

For a long time, the term formal verification was
almost synonymous with functional verification. In
the last years, it became more and more clear that full
functional verification is an elusive goal for almost
all application scenarios. Ironically, this happened
because of advances in verification technology: with
the advent of verifiers, such as KeY, that mostly cover
and precisely model industrial languages and that can
handle realistic systems, it finally became obvious just
how difficult and time-consuming the specification of
the functionality of real systems is. Not verification
but specification is the real bottleneck in functional
verification.

 *	 Andrzej Blikle
	 andrzej.blikle@moznainaczej.com.pl

1	 Institute of Computer Science, Polish Academy of Sciences,
ul. Jana Kazimierza 5, 01‑248 Warsaw, Poland

https://doi.org/10.13140/rg.2.2.27499.39201/3
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-019-0013-0&domain=pdf

	 SN Computer Science (2020) 1:15 15   Page 2 of 31

SN Computer Science

In my opinion, the failure in constructing a practical sys-
tem for program validation has had two sources. The first
lies in the fact that in building a programming language,
we start from syntax and only later—if at all—define its
semantics. The second source is somehow similar, but con-
cerns programs: we first write a program and only then try
to prove it correct.

To build a logic of programs for a programming language,
one must first define its semantics on a mathematical ground.
Since the 1970s it was rather clear for mathematicians that
such semantics to be “practical” must be compositional, i.e.,
the meaning of a whole must be a composition of the mean-
ings of its parts. Later, such semantics were called denota-
tional—the meaning of a program is its denotation—and for
about two decades researchers investigated the possibilities
of defining denotational semantics for existing programming
languages. Two most complete such semantics were written
in 1980 for Ada [4] and for CHILL [18] in using a meta-
language VDM [3]. A little later, but in the same decade, a
minor exercise in this field was a semantics of a subset of
Pascal written in MetaSoft [11], the latter based on VDM.

Unfortunately, none of these attempts resulted in the
creation of software-engineering tools that would be widely
accepted by the IT industry. In my opinion that was una-
voidable, since for the existing programming languages a
full denotational semantics simply cannot be defined (see
“General remarks about denotational models”). That was, in
turn, the consequence of the fact that historically syntaxes
were coming first and only later researchers were trying to
give them a mathematical meaning. In other words—the
decision of how to describe things preceded the reflection
of what to describe.

In addition to that, two more issues were complicating
denotational models of programming languages. They were
related to two mechanisms considered important in the
1960s, but later abandoned and forgotten. One was a com-
mon jump instruction goto, the other—specific procedures
that may take themselves as parameters (Algol 60, see [26]).
The former has led to continuations (see [22]), and the latter
to reflexive domains (see [27]). Both contributed to a techni-
cal complexity of denotational models which was discourag-
ing not only for practitioners, but even for mathematicians.

The second group of problems followed from a tacit
assumption that in the development of a mathematically
correct program, the development of a program should pre-
cede the proof of its correctness. Although this order is quite
obvious in mathematics—first theorem, then its proof—it is
rather awkward for an engineer who first performs all neces-
sary calculations (the proof) and only then builds his bridge
or aeroplane.

The idea “first a program and correctness-proof later”
seems not only irrational, but also practically rather unfea-
sible for two reasons.

The first reason follows from the fact that a proof of a
theorem is usually longer than the theorem itself. Conse-
quently, proofs of program correctness should contain thou-
sands if not millions of lines. It makes “hand-made proofs”
rather unrealistic. On the other hand, automated proofs were
not available by the lack of formal semantics for existing
programming languages.

Even more important seems, however, the fact that pro-
grams that are supposed to be proved correct are usually
incorrect! Consequently, correctness proofs are regarded as
a method of detecting errors in programs. In other words,
we are first doing things in the wrong way to correct them
later. Such an approach does not seem very rational either.

As an attempt to cope with all the mentioned problems,
I propose some mathematical tools and methods that allow
for the development of programming languages with deno-
tational semantics. Their detailed description may be found
in [16]. To illustrate these methods, an exemplary program-
ming language, Lingua, has been developed from denota-
tions to syntax (first publication of that method in [12]). In
this way, the decision of what to do (denotations) precedes
the decision of how to express that (syntax).

Mathematically, both the denotations and the syntaxes
constitute many-sorted algebras (“Many-sorted algebras”),
and the associated semantics is the homomorphism from
syntax to denotations. As it turns out, there is a simple
method—to a large extent algorithmizable—of deriving syn-
tax from (the description of) denotations and the semantics
from both—the syntax and the denotations.

At the level of data structures (i.e., sets of data), Lin-
gua contains Booleans, numbers, texts, records, arrays and
their arbitrary combinations plus SQL databases. It is also
equipped with a relatively rich mechanism of types (which
are not sets; see “Composites, transfers, yokes, types and
values”), e.g., covering SQL-like integrity constraints,1
and with tools allowing the user to define his/her own
types structurally. At the imperative level, Lingua contains
structured instructions, type definitions (“The imperative
layer of the language”), procedures with recursion and
multi-recursion, and some preliminaries of object-oriented
programming.

The issue of concurrency is not tackled in [16], since the
development of a “fully” denotational semantics for concurrent
programs (if at all possible) would require separate research.2

1  Except subordination relations which are described by a different
mechanism.
2  There exist mathematical semantics of concurrency which can be
said to be only “partially denotational”. An example of such a solu-
tion is a “component-based semantics” (cf. [2]), where the denota-
tions of programs’ components are assigned to programs in a com-
positional way (i.e., the denotation of a whole is a composition of the
denotations of its parts), but the denotations themselves are so-called
fucons whose semantics is defined operationally.

SN Computer Science (2020) 1:15 	 Page 3 of 31  15

SN Computer Science

Once we have a language with denotational semantics,
we can define program-construction rules that guarantee
the correctness of programs developed in using these rules.
This method was for the first time sketched in my paper [8]
and in [16] is described in Sect. 8. It consists in developing
so-called metaprograms which syntactically include their
specifications. The method guarantees that if we compose
two or more correct programs into a new program, we get a
correct program again. The correctness proof of a program
is hence implicit in the way the program has been developed.
The aspect of the development of correct programs is not
covered by the present paper.

The basic mathematical tools used in my denotational
models are the following:

1.	 fixed-point theory in partially ordered sets,
2.	 the calculus of binary relations,
3.	 formal-language theory and equational grammars,
4.	 fixed-point domain equations based on so-called naive

denotational semantics (cf. [17]),
5.	 many-sorted algebras,
6.	 abstract errors as a tool for the description of error-han-

dling mechanisms,
7.	 three-valued predicate calculi of McCarthy and Kleene,
8.	 the theory of total correctness of programs with clean

termination (cf. [10]).

All these tools are described in Sects. 2 and 8 of [16], and
some of them are sketched in “What is new in my approach”
of the present paper.

In constructing Lingua, I assume three priorities regard-
ing the choice of the programming mechanisms:

1.	 the priority of the simplicity of the model, i.e., the sim-
plicity of denotations, syntax, and semantics; this has
laid to the resignation from, e.g., goto instruction and
self-applicative procedures,

2.	 the priority of the simplicity of program-construction
rules; e.g., the assumption that the declarations of vari-
ables and procedures, as well as the definitions of types,
should be located at the beginning of a program,

3.	 the priority of protection against “oversight errors” of a
programmer; e.g., the resignation of global variables in
procedures and of side effects in functional procedures.

All these commitments forced me to give up some pro-
gramming constructions, which—although denotationally
definable—would lead to complicated descriptions and even
more complicated program-construction rules. It is worth
mentioning in this place that the priority of simplicity is not
new in the history of programming languages. For that very
reason, programming language designers abandoned goto-s
as well as self-applicative procedures.

The name Lingua has been chosen to commemorate the
circumstances under which from October to December 1969,
I wrote my first denotational semantics of a very simple pro-
gramming language (this work was later published in Dis-
sertationes Mathematicae [5] as my habilitation (postdoc-
toral) thesis). During 3 months as a scholar of the Italian
Government, I was working in the Istituto di Elaborazione
dell’Informazione in Pisa. I did not yet know the works of
Dana Scott or the concept of denotational semantics, and
I constructed my language and its semantics on a model
theory known in mathematical logic. Only 18 years later,
in the year 1987, I described (in [12]) the idea of how to
develop syntax from detonations.

What is in the Paper

I am deeply convinced that one can talk about programming
in a precise and clear way. I also believe that taking respon-
sibility by software engineers should be possible in the same
way as it is in the case of the engineers of cars, bridges, or
aeroplanes. However, I am aware of the fact that the existing
tools for software engineers do not allow for the realization
of any of these goals.

The paper contains many thoughts developed in the
years 1960–1990 that later have been abandoned. One of
the teams developing these ideas was working in the Insti-
tute of Computer Science of the Polish Academy of Sci-
ences, and I had the pleasure to chair it. At that time we had
developed a semi-formal metalanguage MetaSoft dedicated
to formal definitions of programming languages (cf. [11]).
This metalanguage is used in [16] and in the present paper
as a definitional vehicle for denotational models.

I am aware of the fact that the content of [16] represents
a very restricted part of the world of today’s programming
languages. Something had to be chosen, however, to begin
with. Lingua contains, therefore, a selection of program-
ming tools that have been known for many years and that are
still in use. In the future, I shall try to complete my models
with those vehicles that my readers will consider important.
I also hope that maybe some of my readers will undertake
this challenge. Feel invited to cooperate.

What this Paper is Not Offering

The quality of a program consists in:

1.	 the compatibility of the program’s specification with the
expectations of its user,

2.	 the compatibility of the program itself with its specifica-
tion.

In this paper, and in [16], I tackle only the second aspect.
My choice is not caused by the fact that the first problem is

	 SN Computer Science (2020) 1:15 15   Page 4 of 31

SN Computer Science

less important, or that it has been already solved, but only
because the second problem was the main subject of my
research for two decades and therefore I dare to talk about
it now.3

I also have to emphasise very strongly that my virtual
language Lingua is not regarded either as a practical pro-
gramming language or even as a standard of such a language,
although maybe a real language will grow from Lingua in
the future. At present, it only offers a platform where to
explain the constructions and the models discussed in [16].
I have tried to cover in it the selected basic tools that are pre-
sent in languages which are known to me today. I resigned
from concurrency, and object-oriented programming is only
sketched.

I believe, however, that there are enough applications
today that can be developed in using the tools described in
[16].

What is New in My Approach

By “my approach” I understand the ideas and techniques
described in my early papers from [6–15], which have been
summarized and extended in the preprint book [16]. All
these ideas are based on concepts well known for years:

•	 denotational semantics of D. Scott’s and Ch. Strachey’s
(cf. [27, 28]),

•	 generative grammars of N. Chomsky’s (cf. [19, 20]),
•	 Hoare’s logic of programs (cf. [23]),
•	 many sorted algebras introduced to the mathematical

foundations of computer science by Goguen et al. (cf.
[21]),

•	 three-valued propositional calculus Kleene’s (cf. [24]).

What—I believe—is new in my approach is the following:

1.	 Programming language design and development:

	 1.1.	 Denotational model based on set theory rather
than on D. Scott’s reflexive domains which
makes the model much simpler and easy to be
formalized.

	 1.2.	 A model of data types that covers not only struc-
tured and user-defined types, but also SQL-integ-
rity constraints.

	 1.3.	 A formal, and, to a large extent, an algorithmic
method of a systematic development of syntax

from denotations and of a denotational semantics
from both of them.

	 1.4.	 The idea of a colloquial syntax which allows
making syntax user friendly without damaging
a denotational model.

	 1.5.	 Systematic use of error elaboration in programs
supported by a three-valued predicate calculus.

2.	 The development of correct programs:

	 2.1.	 A method of systematic development of correct
programs with their specifications, rather than an
independent development of programs and speci-
fications followed by program-correctness proof.

	 2.2.	 The use of three-valued predicates to extend
Hoare’s logic by a clean termination property.

3.	 General mathematical tools:

	 3.1.	 Equational grammars applied in defining the syn-
tax of programming languages.

	 3.2.	 A three-valued calculus of predicates applied in
designing programming languages and in defin-
ing sound program constructors for such languag-
es.

Mathematical Preliminaries

For a full description of mathematical tools used in the
development of denotational models, see Sect. 2 of [16].
Below, there is a selection of concepts and notations that
are used in the present paper. They all come from MetaSoft
[11]—a metalanguage for the description of programming
languages.4

Notational Conventions

I do not assume that the reader is acquainted with [16] and
therefore I use only as much of my metalanguage as neces-
sary to make the paper sufficiently clear and concise. Let me
start with some basic notations:

•	 a : A means that a is an element of the set A; according
to the denotational dialect, sets are most frequently called
domains,

•	 f.a denotes f(a), and f.a.b.c denotes ((f(a))(b))(c); intui-
tively f takes a as an argument and returns the value f(a)

4  Developed in the decade 1980–1990 in the Institute of Computer
Science of the Polish Academy of Sciences by a team which I had a
honor to chair.

3  I am convinced that the first problem is equally fascinating as the
second. I would very much welcome any initiative of a cooperation
in this field.

SN Computer Science (2020) 1:15 	 Page 5 of 31  15

SN Computer Science

which is a function which takes b as an argument and
returns the value (f(a))(b), which is again a function…

•	 f · g denotes the sequential composition of functions, i.e.,
(f·g).a = g.(f.a),

•	 A → B denotes the set of all partial functions from A to
B, i.e., functions which are (possibly) undefined for some
elements of A,

•	 A ↦ B denotes the set of all total functions from A to B,
i.e., functions undefined for all elements of A; of course,
A ↦ B is a subset of A → B,

•	 A ⇒ B denotes the set of all finite function from A to B,
i.e., functions defined for only finite subsets of A; such
functions are called mappings, and of course, each map-
ping is a particular case of a partial function,

•	 [a1/b1, …, an,bn] denotes a mapping that assigns bi to ai
and is undefined otherwise,

•	 A | B denotes the set-theoretic union of A and B,
•	 A × B denotes the Cartesian product of A and B,
•	 Ac* denotes the set of all finite (possibly empty) tuples of

the elements of A,
•	 Ac+ denotes the set of all finite non-empty tuples of the

elements of A,
•	 c*ctt and ff denote logical values “true” and “falsity”,

respectively,
•	 many-character symbols like dom, bod, com denote

metavariables running over domains and if they are writ-
ten with quotation marks as ‘abdsr’ denote themselves,
i.e., metaconstants,5

•	 in the definitional clauses of Lingua instead of indexed
variables like sta1, we write sta1 or sta-1 which is closer
to a notation used in programs.

In this paper, three different linguistic levels are
distinguished:

1.	 the level of the basic text of the paper written in Times
New Roman,

2.	 the level of a formal, but not formalized, metalanguage
MetaSoft written in Arial,

3.	 the level of formalized programming language Lingua
whose syntax, i.e., programs, are written in Courier
New.

The difference between “formal” and “formalized” is
such that the former is introduced intuitively as a mathemati-
cal notation, whereas the latter requires an explicit definition
of syntax (usually by a grammar) and a formal definition of
semantics.

A frequently used construction in MetaSoft is a condi-
tional definition of a function with the following scheme:

f.x =
p1.x g1.x
p2.x g2.x
…
true gn.x

where each pi is a classical predicate, i.e., a total function
with logical values tt or ff, true true is a predicate which is
always satisfied, and each gi is just a function. The formula
above is read as follows:

Intuitively speaking, the evaluation of such a function
goes line by line and stops at the first line where pi.x is
satisfied.

In the scheme above, I also allow the situation where, in
the place of a gi.x we have the undefinedness sign “?”, which
means that for x that satisfies pi.x the function f is undefined.
This convention is used in conditional definitions of partial
functions.

In such definitions, we also use a technique similar to
defining local constants in programs. For instance, if

we can write

f.x =
p1.x g1.x
let

(a, b) = x
p2.a g2.x
p3.b g3.x.

which is read as: “let x be a pair of the form (a, b)”. We can
also use let in the following way:

f.x =
p1.x g1.x
let

y = h.x
p2.x g2.y
p3.x g3.y.

if p1.x is true, then f.x = g1.x and otherwise,

if p2.x is true, then f.x = g2.x and otherwise,

…

and in all other cases f.x = gn.x.

𝖿 ∶ 𝖠𝗑𝖡 ↦ 𝖢,

5  Metavariables and metaconstants are objects of the metalanguage
MetaSoft, whereas variables and constants are objects of the pro-
gramming language Lingua.

	 SN Computer Science (2020) 1:15 15   Page 6 of 31

SN Computer Science

All these explanations are certainly not very formal, but
the notation should be clear when it comes to concrete exam-
ples in the sequel of the paper.

By f[a1/vn, …, an/vn], I denote an overwriting of f by [a1/
vn, …, an/vn], i.e., a function which differs from f only on
the domain {a1, …, an}.

Many‑Sorted Algebras

The denotational model of a programming language inves-
tigated in [16] is based on the concept of a many-sorted
algebra. Half formally, a many-sorted algebra is a finite col-
lection of sets, called the carriers or sorts of the algebra and
a finite collection of functions called the constructors of the
algebra. The constructors take arguments from and return
their values to carriers. A graphical representation of a two-
sorted algebra of numbers and Booleans is shown in Fig. 1.
This algebra will be referred to as NumBool.

A textual representation of NumBool—called the sig-
nature of this algebra—is shown in the left part of Fig. 2.

In our algebra, we have four zero-argument construc-
tors 1, 0, tt, ff, one one-argument constructor not, and four

two-argument constructors +, =, <, or. The zero-argument
constructors create elements of carriers “from nothing”,
whereas all other constructors create elements of carriers
from other elements of carriers.

An element of an algebra is called reachable if it can
be constructed (reached) using the constructors of the alge-
bra. In NumBool, where Num denotes the set of all real
numbers, the reachable subset of Num contains only non-
negative integers.

By a reachable subalgebra of an algebra, we mean its
subalgebra with carriers restricted to their reachable parts.
In our case, this is an algebra of non-negative integers and
Booleans.

An algebra is said to be reachable if all its carriers con-
tain only reachable elements. Notice that if we remove the
zero-argument constructor 1 from NumBool, then the reach-
able subset of Num becomes empty.

In the algebraic approach to denotational models, the
algebra of program denotations (meanings) is usually
unreachable, whereas the algebras of syntax are reachable
by definition (see “Equational grammars”).

Fig. 1   Graphical representation of a two-sorted algebra NumBool 

Fig. 2   The signatures of two
mutually similar algebras

The algebra NumBool
1 : ⟼ Num
0 : ⟼ Num
+ : Num x Num ⟼ Num
= : Num x Num ⟼ Bool
< : Num x Num ⟼ Bool
tt : ⟼ Bool
ff : ⟼ Bool
not : Bool ⟼ Bool
or : Bool x Bool ⟼ Bool

The algebra NumBoolExp
1 : ⟼ NumExp
0 : ⟼ NumExp
+ : NumExp x NumExp ⟼ NumExp
= : NumExp x NumExp ⟼ BoolExp
< : NumExp x NumExp ⟼ BoolExp
tt : ⟼ BoolExp
ff : ⟼ BoolExp
not : BoolExp ⟼ BoolExp
or : BoolExp x BoolExp ⟼ BoolExp

SN Computer Science (2020) 1:15 	 Page 7 of 31  15

SN Computer Science

On the right-hand side of Fig. 2, we have the signature of
an algebra of syntax NumBoolExp of (variable-free) expres-
sions. This algebra is similar to NumBool in the sense that
there is a one–one correspondence between the constructors
and the carriers of both algebras, and the “types of construc-
tors” in one algebra are similar to the types in the other (for
a formal definition see Sect. 2.11 of [16]). In our example,
this correspondence is implicit row by row in the notation: 1
corresponds to 1, 0 corresponds to 0, NumExp corresponds
to Num,+ corresponds to +, etc. The constructors of Num-
BoolExp create expressions. E.g., the constructor + given
two numeric expressions nexp-1 and nexp-2 creates the
expression (written with Lingua abstract syntax)6:

Some examples of expressions are:

We shall assume that NumBoolExp contains only reach-
able expressions. Such algebra is implicit in the signature of
NumBool and, due to its reachability, is unique. Tradition-
ally, it is called the abstract syntax of the algebra NumBool.

It may be easily proved that for every algebra Alg—and
in fact for its signature—there exists a unique algebra of
abstract syntax AbsSyn. It is also easy to prove that there
exists a unique homomorphism:

We call it the abstract semantics of AbsSyn. Of course, a
homomorphism between many-sorted algebras is a tuple of
functions—one for every carrier. In the case of our example
we have two corresponding functions:

which satisfy the equations (called the semantic clauses)7:

For instance:

SemN.[+ (1, + (1,0))] = 2,
SemB.[< (+(1, + (1,0)),0)] = ff

+(���� − �, ���� − �)

�, �,+(�, �),+(�,+(�, �)), ��, ���(< (�,+ (�, �))

𝖠𝗌 ∶ 𝖠𝖻𝗌𝖲𝗒𝗇 ↦ 𝖠𝗅𝗀

𝖲𝖾𝗆𝖭 ∶ 𝖭𝗎𝗆𝖤𝗑𝗉 ↦ 𝖭𝗎𝗆

𝖲𝖾𝗆𝖡 ∶ 𝖡𝗈𝗈𝗅𝖤𝗑𝗉 ↦ 𝖡𝗈𝗈𝗅

(1)

����.[�]= �

����.[+(�����, �����)] = ����.
[
�����

]
+����.

[
�����

]7

����.[<(�����, �����)] = ����.
[
�����

]
< ����.

[
�����

]

���

Notice that our homomorphism is “gluing” many differ-
ent expressions into the same number or Boolean element,
e.g.,

SemN.[+ (1, + (1,0))] = SemN.[+ (1,1)] = 2,
SemB.[< (+(1, + (1,0)),0)] = SemB.[< (0,0)] = ff

The notation of an abstract syntax is rather awkward and
therefore abstract syntax is usually transformed into a con-
crete syntax, which is more “user friendly”. In our case, it
would correspond to an infix notation where the concrete +
given two numeric expressions, nexp1 and nexp2, creates
the expression:

(nexp1 + nexp2)

and similarly for other constructors. From an algebraic per-
spective concrete syntax is an algebra—let us denote it by
ConSyn—defined in a way that guarantees the existence of
two homomorphisms:

and moreover that
As = Co · Cs.

There is more about a denotational model of program-
ming languages in “Five steps to a denotational model”.
Readers interested in the mathematical justifications of the
model are referred to Sects. 2.10 to 2.13 of [16] and to the
references given there.

Equational Grammars

Let A be an arbitrary finite set of symbols called an alphabet.
By a word over A, we mean every finite sequence of the ele-
ments of A including the empty sequence ε. If p and q are
words, then by their concatenation—in symbols pq—we
mean a sequential combination of these words.

Sets of words over A are called formal languages or
just languages over A. If P and Q are languages, then the
language

PQ = {pq | p : P and q : Q}

is called the concatenation of P and Q. Similarly to the Car-
tesian c+ and c* defined in “Notational conventions”, we
define analogous operations on languages:

𝖢𝗈 ∶ 𝖠𝖻𝗌𝖲𝗒𝗇 ↦ 𝖢𝗈𝗇𝖲𝗒𝗇 the concretization of abstract syntax,

𝖢𝗌 ∶ 𝖢𝗈𝗇𝖲𝗒𝗇 ↦ 𝖠𝗅𝗀 the (unique) concrete-syntax semantics,

𝖯𝟢={}, 𝖯𝗇= 𝖯𝖯𝗇−𝟣𝖿𝗈𝗋 𝗇 > 𝟢 (a power of a language),

𝖯+= 𝖴{𝖯𝗇|𝗇 > 𝟢}

𝖯 ∗= 𝖯+|𝖯𝟢.

6  For simplicity, I use here the same symbol “+” to denote a con-
structor of expressions and a syntactic symbol of addition.
7  Here, nexp1, etc. are written in Arial since they are metavariables
that run over syntactic elements, i.e., expressions.

	 SN Computer Science (2020) 1:15 15   Page 8 of 31

SN Computer Science

by an equational grammar over an alphabet A we mean a set
of recursive equations of the form:

where Xi’s run over languages over A and all pi’s are opera-
tions on languages constructed as combinations of finite
languages (constants), by union, concatenation, power, star,
and plus operations. It may be proved that every equational
grammar has a unique least8 solution which constitutes a
tuple (P1,…,Pn) of languages. Such a tuple will be called a
many-sorted language.

Every equational grammar defines unambiguously a
reachable algebra of words. The following grammar defines
the algebra NumBoolExp of “many-sorted algebras”:

According to a usual style for writing grammars, the sym-
bols 0, 1, tt, ff, +, = , <, not, or, (,) and the coma denote
one-element languages: {0}, {1}, …

Equational grammars correspond closely to context-free
grammars introduced by Noam Chomsky (e.g., in [19]) in
the sense that for each context-free grammar there exists
an equational grammar that defines the same many-sorted
language, and for a certain class of equational grammars
there exists an equivalent context-free grammar. They have
been introduced in [6] and are also described in Sects. 2.5
and 2.14 of [16].

Abstract Errors

For practically all expressions appearing in programs, their
values in some circumstances cannot be computed “success-
fully”. Here are a few examples:

•	 the value of x/y cannot be computed if y = 0,
•	 the value of the expression x + 1 cannot be computed if

x has not been declared in the program,
•	 the value of x + y cannot be computed if the sum exceeds

the maximal number allowed in the language,
•	 the value of the array expression a[k] cannot be computed

if k is out of the domain of array a, or if a is not an array,
•	 the query “Has John Smith retired?” cannot be

answered if John Smith is not listed in a database.

�� = ��.
(
��,… ,��

)

…

�� = ��.
(
��,… ,��

)

������=�|�|+(������, ������),

�������=��|��| = (������, ������)| < (������, ������)|
���(�������)|��(�������,�������)

In all these cases, a well-designed implementation should
stop the execution of a program and generate an error mes-
sage or perform a recovery procedure.

To describe that mechanism formally, we introduce the
concept of an abstract error. In a general case abstract errors
may be anything, but in our models, they are texts such as,
e.g., ‘division-by-zero’. They are enclosed in apostrophes to
distinguish them from metavariables.

The fact that an attempt to evaluate x/0 raises an error
message can be now expressed by the equation:

x/0 = ‘division-by-zero’.

In the general case with every domain Data, we associate
a corresponding domain with abstract errors

DataE = Data | Error,

where Error denotes the set of all abstract errors that are
generated by our programs. Consequently, every partial
operation

op : Data1 x … x Datan → Data

whose partiality is computable9 may be extended to a total
operation

Of course, ope should coincide with op wherever op is
defined.

The operation ope is said to be transparent for errors or
simply transparent if the following condition is satisfied:

if dk is the first error in the sequence d1,…,dn, then ope.
(d1,…,dn) = dk

Intuitively, this condition means that arguments of ope
are evaluated one by one from left to right, and the first error
(if it appears) becomes the final value of the computation.

The majority of operations on data that will appear in our
models are transparent. Exceptions are Boolean operations
discussed in “Many-sorted algebras”

Error-handling mechanisms may be implemented in such
a way that errors serve only to inform the user that (and why)
program execution has been aborted. Such a mechanism is
called reactive. Another option is that the generation of an

𝗈𝗉𝖾 ∶ 𝖣𝖺𝗍𝖺𝖤𝟣𝗑… 𝗑𝖣𝖺𝗍𝖺𝖤𝗇 ↦ 𝖣𝖺𝗍𝖺𝖤

9  Informally speaking, a partiality of a function F is computable if
we can write a procedure which given an arbitrary tuple d1, …, dn of
arguments of F will check if F.(d1, …, dn) is or is not defined. E.g.,
for an array expression arr[k], we can check if the index k belongs to
the index range of the array arr. From the general theory of comput-
ability we know, however, that there exist functions with non-comput-
able partialities.8  In the sense of a componentwise inclusion.

SN Computer Science (2020) 1:15 	 Page 9 of 31  15

SN Computer Science

error results in an action, e.g., of recovering the last state of
a database. Such mechanisms are called proactive.

A reactive mechanism may be quite easily enriched to a
proactive one (see Sects. 6.1.8 and 12.7.6.4 of [16]). How-
ever, since the latter is technically more complicated, in this
paper only reactive model will be discussed.

A well-defined error-handling mechanism allows avoid-
ing situations where programs are aborted without any
explanation, or—even worse—when they generate an incor-
rect result without warning the user.

Three‑Valued Propositional Calculus

Tertium non datur—ancient masters used to say. Computers
have denied this principle.

In the Aristotelean classical logic, every sentence is either
true or false. The third possibility does not exist. However,
in the world of computers, the third possibility is not only
possible but also inevitable. E.g., in evaluating a Boolean
expression x/y > 2 an error will appear if the value of y
equals zero.

To describe the error-handling mechanism of Boolean
expressions, we introduce a domain of Boolean values with
an error

BooleanE = {tt, ff, ee}

In this case, ee stands for “error”, but in fact, represents
either an error or an infinite computation (a looping). In this
section, we assume for simplicity that there is only one error.
This assumption does not disturb the generality of our model
as long as all errors are handled in the same way.

Now, it turns out that the transparency of Boolean opera-
tors would not be an adequate choice. To see that, consider
a conditional instruction:

We would probably expect that for x = 0 one should
execute x: = x-1. If, however, our conjunction would be
transparent, then the expression

�� � ≠ � ��� �∕� < �� ���� � ∶= � + � ���� � ∶= �−� � �

� ≠ � ��� �∕� < ��

would be evaluated to ‘division-by-zero’, which means that
the program aborts. Notice also that the transparency of and
would imply

ff and ee = ee

which would mean that an interpreter that evaluates p
and q first evaluates both p and q—as in “usual mathemat-
ics”—and only later applies and to them. Such a mode is
called an eager evaluation.

An alternative to it is a lazy evaluation, where, if p = ff,
then the evaluation of q is skipped, and the final value of the
expression is ff. In such a case:

ff and ee = ff
tt or ee = tt

A three-valued propositional calculus with lazy evalua-
tion was described in 1961 by John McCarthy (in [25]) who
defined Boolean operators as shown in Table 1.

To see the intuition behind the evaluation of McCarthy’s
operators, consider the expression p or-m q assuming that
its arguments are computed from left to right:10

•	 If p = tt, then we give up the evaluation of q (lazy evalu-
ation) and assume that the value of the expression is tt.
Notice that in this case we may avoid an error message
or an infinite computation that could be generated by q.

•	 If p = ff, then we evaluate q, and its value—possibly ee—
becomes the value of the expression.

•	 If p = ee, then this means that the evaluation of our
expression aborts or loops at the evaluation of its first
argument, and hence the second argument is not evalu-
ated. Consequently, the final value of the expression must
be ee.

The rule for and is analogous. Notice that McCarthy’s
operators coincide with classical operators on classical val-
ues (gray fields in the tables). McCarthy’s implication is
defined classically:

Table 1   Propositional operators
of John McCarthy

or-m tt ff ee
tt tt tt tt
ff tt ff ee
ee ee ee ee

and-m tt ff e
e

tt tt ff e
e

ff ff ff ff
ee e

e
e

e
e

e

not-m
tt ff
ff tt
ee ee

10  The suffix “-m” stands for “McCarthy” and is used to distinguish
McCarthy’s operators not only from classical ones, but also from the
operators of Kleene, which are used in SQL.

	 SN Computer Science (2020) 1:15 15   Page 10 of 31

SN Computer Science

p implies-m q = (not-m p) or-m q

As it turns out, not all classical tautologies remain satis-
fied in McCarthy’s calculus. Among those that are satisfied,
we have:

•	 associativity of and and or,
•	 De Morgan’s laws

and among the non-satisfied are:

•	 or-m and and-m are not commutative, e.g., ff and-m
ee = ff but ee and-m ff = ee,

•	 and-m is distributive over or-m only on the right-hand
side, i.e.,

p and-m (q or-m s)=(p and-m q) or-m (p and-
m s); however,
(q or-m s) and-m p ≠ (q and-m p) or-m (s and-m
p) since
(tt or-m ee) and-m ff = ff and (tt and-m ff) or-m (ee
and-m ff) = ee,

•	 analogously or-m is distributive over and-m only on the
right-hand side,

•	 p or-m (not p) does not need to be true, but is never
false,

•	 p and-m (not p)not p) does not need to be false, but is
never true.

General Remarks About Denotational
Models

Why Do We Need Denotational Models?

Denotational models of programming languages serve as a
starting point for the realization of three tasks:

1.	 building the implementation of the language, i.e., its
parser and interpreter or compiler,

2.	 creating rules of building correct specified programs,
3.	 writing a user manual.

In building a language in this way, we should observe
one very important (although not quite formal) principle of
simplicity:

A programming language should be as simple and easy
to use as possible, although without damaging its func-
tionality, mathematical clarity and the completeness of
its description. The same applies to the manual of lan-
guages and to the rules of building correct programs.

This principle shall be realized by caring to make:

1.	 the syntax of the language as close as possible to the
language of intuitive mathematics; for example, when-
ever this is common, we use infix notation and allow the
omission of “unnecessary” parentheses,

2.	 the structure of the language (i.e., program constructors)
leading to possibly simple rules of constructing correct
programs (Sect. 8 of [16]),

3.	 the semantics of the language easy to understand by the
user rather than convenient for the builder of implemen-
tation; for the latter an implementation-oriented equiva-
lent model may be written.

Special attention should be given to point 2, because the
simplicity of the rules of building correct programs leads to
a better understanding of programs by programmers. This
fact was realized already in the year 1970 and has led to
the elimination of goto instructions. This decision resulted
in a major simplification of programs’ structures, which
increased their reliability.

Following point 3, I will sometimes—as common in
mathematics—“forget” about the difference between syn-
tax and denotations. E.g., I will talk about the value of an
expression x + y, rather than about the value of its detona-
tion. I would say that the instruction x: = y+1 modifies
variable x, instead of saying that the denotation of this
instruction modifies the memory state at variable x, etc. Of
course, on a formal level syntax will be precisely distin-
guished from denotations.

Five Steps to a Denotational Model

Building up Lingua I refer to an algebraic model described
in “Many-sorted algebras”. This model corresponds to the
diagram of three algebras shown in Fig. 3. We build it in
such a way that the existence of the semantics Cs of concrete
syntax is insured, and the equation:

Fig. 3   An algebraic model of a programming language

SN Computer Science (2020) 1:15 	 Page 11 of 31  15

SN Computer Science

As = Co · Cs

is satisfied.
The construction of a denotational model begins with an

algebra of detonation Den. Its constructors unambiguously
determine the reachable subalgebra ReDen. From the sig-
nature of Den, we unambiguously derive the abstract syntax
algebra AbsSy. The first of these steps is creative since it
comprises all the major decisions about the future language.
Contrary to it, the derivation of AbsSy can be performed
algorithmically. The corresponding algorithm takes the
description—e.g., in MetaSoft—of the signature of Den.
This technique will be explained in more detail in the sub-
sequent sections.

As we saw in “Many-sorted algebras”, the abstract syntax
is not very convenient for programmers. To make it more
user friendly, in the next step we build a concrete syntax
ConSy. In typical situations, this is done by replacing the
prefix notation by infix notation and skipping some “unnec-
essary” parentheses. A typical example of skipping paren-
theses is the replacement of a sequential composition of
instructions in the abstract syntax:

;(ins-1,;(ins-2, ins-3))

by its concrete-syntax version:

ins-1; ins-2; ins-3

Although the corresponding homomorphism Co (concre-
tization) is “gluing” two abstract programs

;(ins-1,;(ins-2, ins-3)) and
;(;(ins-1, ins-2), ins-3)

into the same concrete program, this parsing ambiguity (of
the corresponding grammar) is not harmful to the existence
of a concrete semantics:

since abstract semantics As glues these programs into a
common denotation.11

Another simplification that we may like to introduce
into our language is the omission of parentheses in numeric
expression. E.g., instead of writing

we would like to write

𝖢𝗌 ∶ 𝖢𝗈𝗇𝖲𝗒 ↦ 𝖱𝖾𝖣𝖾𝗇

(� + (� + �)))

In this case, however, we end up with a syntax which does
not have a semantics into Den, since the expression (2) cor-
responds to two concrete expressions:

whose denotations are not the same. It is due to the fact that
in every computer arithmetic there is a limit in the “size” of
a number. E.g., if the largest acceptable number is 10, then

In other words, computer addition is not associative.
A usual solution in such a case is the assumption that

expressions are evaluated from left to right, which means
that (2) is evaluated as

In other words, an interpreter of the language first adds
the “missing” parentheses and then evaluates the expression
according to the concrete semantics. The same technique
is used in the evaluation of expressions with addition and
multiplication, e.g.,

in which case the operation of adding parentheses refers to
the priority of multiplication over addition; hence the result-
ing concrete expression is:

(2)� + � + �

(� + (� + �))) and

((� + �) + �)

(−� + (�� + �)) evaluates to }���������

(an error-message, see Sect. 2.4)

((−� + ��) + �) evaluates to �

((� + �) + �).

� + � + � ∗ �

Fig. 4   An algebraic model of a language with colloquial syntax

11  Formally, this means that the algebra of concrete syntax is not
more ambiguous than the algebra of denotation which guarantees the
existence of a unique homomorphism between them (see Sect. 2.13
of [16]).

	 SN Computer Science (2020) 1:15 15   Page 12 of 31

SN Computer Science

To formalize this technique in our framework, we intro-
duce yet another algebra called a colloquial syntax denoted
by ColSy (Fig. 4). This algebra is not homomorphic to con-
crete syntax and has a different signature. However, it is
constructed in such a way that there exists an implementable
transformation

which “removes colloquialisms”, which in our case means
adding the missing parentheses. Such a transformation is
called the restoring transformation and, of course, is not a
homomorphism.

A user manual of a programming language with colloqui-
alisms describes concrete syntax by a grammar, and the col-
loquialisms as additional grammatical clauses. This means
that the programmer is free to use either a concrete syntax
or a colloquial one.

To sum up, the construction of a programming language
with a denotational model consists of five steps:

1.	 The construction of Den where we decide about the
meaning of future programs and their constructors. This
is the most creative step where we decide about all the
programming mechanisms of our language.

2.	 The derivation of abstract syntax, i.e., its grammar,
from the signature of Den. This step is fully program-
mable.

3.	 The definition of concrete syntax, i.e., its grammar. To a
certain degree, this is a creative step again, although in
this case it may be supported by a software tool which
assists the designer in transforming the grammar of
abstract syntax into its concrete counterpart.

4.	 The description of the semantics Cs of concrete syn-
tax. The definition of this semantics, i.e., the semantic
clauses as (1), may be derived algorithmically from the
definitions of Den, AbsSy and ConSy.

5.	 The enrichment of the concrete syntax by colloquial-
isms and the definition of the corresponding restoring
transformation. This is again a creative step.

((� + �) + (� ∗ �))

𝖱𝗍 ∶ 𝖢𝗈𝗅𝖲𝗒 ↦ 𝖢𝗈𝗇𝖲𝗒

Two Layers of a Programming Language

In the sequel of the paper we will see how to use the
described model to construct a programming language with
two basic layers of programming tools:

1.	 applicative layer covering data expressions and type
expressions whose denotations are functions from states
to data and from states to types, respectively,

2.	 imperative layer, covering instructions and declarations
whose denotations are functions from states to states.

The Applicative Layer of Lingua

The Data

The data available in Lingua may be split into two
categories:

1.	 simple data including Booleans, numbers, and words
(finite strings of characters),

2.	 structural data including lists, multi-dimensional arrays,
records, and their arbitrary combinations.

Structural data may “carry” simple data as well as other
structural data. That means that we may build “deep” data
structures, e.g., lists that carry records of arrays. Lists and
arrays always carry elements of the same type, whereas
records are not restricted in this way.

All our data (with abstract errors) and the correspond-
ing constructors constitute a many-sorted algebra of data.
Formally, the data domains in Lingua are defined by the
following set of so-called domain equations:

The symbols boo, num, ide, etc., which precede our
equations are metavariables that will run over the corre-
sponding domains in further definitions. This is just another
notational convention.

The domain Boolean consists of only two elements that
represent “truth” and “falsity”. The domains Alphabet,
Number and Identifier are the parameters of our model,

𝖻𝗈𝗈 ∶ 𝖡𝗈𝗈𝗅𝖾𝖺𝗇 ={𝗍𝗍, 𝖿𝖿}

𝗇𝗎𝗆 ∶ 𝖭𝗎𝗆𝖻𝖾𝗋 −−𝗍𝗁𝖾 𝗌𝖾𝗍 𝗈𝖿 𝖺𝗅𝗅 𝗇𝗎𝗆𝖻𝖾𝗋𝗌 𝗐𝗂𝗍𝗁 𝗋𝖾𝗌𝗍𝗋𝗂𝖼𝗍𝖾𝖽 𝖽𝖾𝖼𝗂𝗆𝖺𝗅 𝗋𝖾𝗉𝗋𝖾𝗌𝖾𝗇𝗍𝖺𝗍𝗂𝗈𝗇𝗌

𝗂𝖽𝖾 ∶ 𝖨𝖽𝖾𝗇𝗍𝗂𝖿 𝗂𝖾𝗋 −−𝖺 𝖿 𝗂𝗑𝖾𝖽 𝖿 𝗂𝗇𝗂𝗍𝖾 𝗌𝗎𝖻𝗌𝖾𝗍 𝗈𝖿 𝗍𝗁𝖾 𝖽𝗈𝗆𝖺𝗂𝗇 𝖠𝗅𝗉𝗁𝖺𝖻𝖾𝗍+

𝗐𝗈𝗋 ∶ 𝖶𝗈𝗋𝖽 ={}}𝖠𝗅𝗉𝗁𝖺𝖻𝖾𝗍 ∗{}}

𝗅𝗂𝗌 ∶ 𝖫𝗂𝗌𝗍 =𝖣𝖺𝗍𝖺𝖼∗

𝖺𝗋𝗋 ∶ 𝖠𝗋𝗋𝖺𝗒 =𝖭𝗎𝗆𝖻𝖾𝗋 ⇒ 𝖣𝖺𝗍𝖺

𝗋𝖾𝖼 ∶ 𝖱𝖾𝖼𝗈𝗋𝖽 = 𝖨𝖽𝖾𝗇𝗍𝗂𝖿 𝗂𝖾𝗋 ⇒ 𝖣𝖺𝗍𝖺

𝖽𝖺𝗍 ∶ 𝖣𝖺𝗍𝖺 =𝖡𝗈𝗈𝗅𝖾𝖺𝗇|𝖭𝗎𝗆𝖻𝖾𝗋|𝖶𝗈𝗋𝖽|𝖫𝗂𝗌𝗍|𝖠𝗋𝗋𝖺𝗒|𝖱𝖾𝖼𝗈𝗋𝖽

SN Computer Science (2020) 1:15 	 Page 13 of 31  15

SN Computer Science

which means that they may differ from one implementation
to another.

The Alphabet is a finite set of characters (except quo-
tation marks), while Identifier is a finite fixed set of non-
empty strings over Alphabet.

A word is a finite string (possibly empty) of the elements
of Alphabet closed between apostrophes.

A list is a finite sequence (possibly empty) of arbitrary
data.

An array is a mapping from numbers to data, and a record
is a mapping from identifiers to data.

A data is a Boolean, a number, a word, a list, an array, or a
record. Notice that identifiers are not included in data. They
have been introduced only to define the domain of records.
Identifiers that appear in records are called record attributes.

As we see, the four last equations have a recursive char-
acter, and therefore the existence of a solution of our set of
equations is not evident. However, such a solution exists
and is (in a sense) unique12 which may be proved on the
ground of the theory of chain-complete partially ordered
sets (Sect. 2.7 of [16]).

It is to be emphasized in this place that the domain of data
and all of its subdomains are larger than the corresponding
sets of numbers, words, lists, etc. that can be “generated”
by the programs of Lingua. Further on, we make sure that:

1.	 all “executable” data are restricted in their size—this is
formalized be introducing a universal predicate over-
sized defined for all data,

2.	 for any given list or array all its elements are of the same
type (see “Composites, transfers, yokes, types and val-
ues”),

3.	 the domain of each array must be of the form {1, …, n},
i.e., must be a set of consecutive positive integers start-
ing from 1.

The constructors of data are defined in such a way that all
reachable data satisfy the above restrictions. This technique
allows keeping our domain equations relatively simple.

Composites, Transfers, Yokes, Types, and Values

Every data in Lingua has a type. Types describe properties
of data, but represent entities which can be constructed and
modified independently of data. Our mechanism of types
allows programmers to define their own types for future use
either in defining new types or in declaring variables.13

Types are pairs consisting of a body and a yoke. Every
type is associated with a set of data of that type called the
clan of the type.

Intuitively, a body describes an “internal structure of a
data”—e.g., indicates that a data is a number, a list, or a
record—and formally is a combination of tuples and map-
pings. The domain equation that defines the domain of bod-
ies is the following:14

The bodies of simple data are one-element tuples of meta-
constants, e.g., (‘Boolean’). The bodies of lists and arrays
are, respectively, of the form (‘L’, bod) or (‘A’, bod) where
the body bod is shared by all the elements of a list/array
and the initials ‘L’ and ‘A’ indicate that we are dealing with
a list/array.

A record body is of the form (‘R’, body-record) where
body-record is a metarecord of bodies such as, e.g.:

[Ch-name/(‘word’),
fa-name/(‘word’),
award-years/(‘A’, (‘number’)),
salary/(‘number’),
bonus/(‘number’)].

The words on the left-hand side of semicolons are attrib-
utes. The first two attributes and the last two have simple
bodies, whereas the third one—an array body. For the sake
of further discussion, the body defined above will be referred
to as employee.

With every body bod, we associate a set of data with that
body called the clan of that body and denoted by CLAN-Bo.
bod. The function CLAN-Bo is defined inductively relative
to the structure of bodies. E.g., the set CLAN-Bo.employee
contains records with numbers, words, and one-dimensional
number arrays assigned to the respective attributes.

Next important concept from the “world” of data and
types is a composite which is a pair (dat, bod) consisting of
a data and its body such that:

dat : CLAN-Bo.bod

𝖻𝗈𝖽 ∶ 𝖡𝗈𝖽𝗒 =

{(}𝖡𝗈𝗈𝗅𝖾𝖺𝗇’)}|{(}𝗇𝗎𝗆𝖻𝖾𝗋’)}|{(}𝗐𝗈𝗋𝖽’)}| (simple bodies)

{}𝖫’} × 𝖡𝗈𝖽𝗒| (list bodies)

{}𝖠’} × 𝖡𝗈𝖽𝗒| (array bodies)

{}𝖱’} × (𝖨𝖽𝖾𝗇𝗍𝗂𝖿 𝗂𝖾𝗋 ⇒ 𝖡𝗈𝖽𝗒) (record bodies)

12  It is unique in the sense that by the solution of such an equation,
we mean its least solution where the ordering is the componentwise
set-theoretic inclusion.
13  Technical details in Sect. 5.2 of [16].

14  This is again a recursive equation (as it was the case of data-
domain equations) and again its unique solution exists.

	 SN Computer Science (2020) 1:15 15   Page 14 of 31

SN Computer Science

Composites are the results of data-expression evalua-
tions (“Data expressions”). The use of composites permits
to describe the mechanism of checking if the arguments
“delivered” to an operation are of appropriate types. E.g., if
we try to put a word on a list of numbers, the corresponding
operation will generate an error message.

Having defined composites, we can define transfers and
yokes. Transfers are one-argument functions that transform
composites or errors into composites or errors, and yokes are
transfers with Boolean composites as values. By a Boolean
composite, we mean (tt, (‘Boolean’)) or (ff, (‘Boolean’)).
Yokes may also assume abstract errors as values.

Mathematically, yokes are close to one-argument predi-
cates on composites.15 An example of a yoke that describes
a property of composites whose bodies are employee may
be the inequality:

record.salary + record.bonus < 10000.

This yoke is satisfied whenever its (unique) argument is
a record composite with (at least) the attributes salary and
bonus, and the data corresponding to these attributes satisfy
the corresponding inequality. In this example,

record.salary + record.bonus

is a transfer which is not a yoke. It transforms record com-
posites into number composites. If the argument of this
yoke/transfer is not a record with attributes salary and bonus
that carry numbers, then the result of the computation is an
error.

Yokes have been introduced into Lingua to describe
SQL-integrity constraints (for details see Sect. 12 of [16]).

Transfers have merely a technical role. We need them
only to define an algebra where yokes may be constructed.
With every transfer we associate its clan:

CLAN-Tr.tra = (com | tra.com = (tt, (‘Boolean’))}.

Of course, the clans of transfers which are not yokes
are empty. By TT we denote the transfer that yields (tt,
(‘Boolean’)) for any composite.

A pair that consists of a body and a yoke is called a type.
For technical reasons, types are defined as pairs consisting of
a body and an arbitrary transfer (i.e., not necessarily a yoke).
With every type typ = (bod, tra), we associate its clan which

is the set of such composites whose data belong to the clan
of the body and which satisfy the transfer. Formally:

CLAN-Ty.(bod, tra) = {(dat, bod) | dat : CLAN-Bo.bod
and (dat, bod) : CLAN-Tr.tra}

The last concept associated with data and types is value.
A value is a pair (dat, typ), i.e., (dat, (bod, tra)), which
we sometimes write as ((dat, bod), tra). As we see, a
value may be regarded either as a pair data type or as a pair
composite-transfer.

For technical reasons, we also allow pseudo-values of
the form (Ω, typ), where Ω is an abstract object called a
pseudo-data.

Values are assigned in memory states to the identifiers
of variables. Variable declarations assign pseudo-values to
variables, and initializing assignments replace Ω by a data.

As we are going to see, an assignment instruction—i.e.,
an instruction that assigns values to identifiers (see “Instruc-
tions”)—may only change the data assigned to a variable,
and in some special cases its body, but never its yoke. To
change a yoke, we use special yoke-oriented instruction.

Summing up, the list of domains that are associated with
data and their types in Lingua is the following:

Similarly, as in many programming languages (although
not in all of them), types in Lingua have been introduced
for four reasons:

1.	 to define a type of a variable when it is declared, and
to assure that this type remains unchanged (with some
exceptions)16 during program executions,

2.	 to ensure that a data which is assigned to a variable by
an assignment is of the type consistent with the declared
type of that variable,

3.	 to ensure that a similar consistency takes place when
sending actual parameters to a procedure or when
returning reference parameters by a procedure,

4.	 to ensure that in evaluating an expression, an error mes-
sage is generated whenever data “delivered” to that
expression are of an inappropriate type, e.g., when we

𝖽𝖺𝗍 ∶ 𝖣𝖺𝗍𝖺 =…(𝗍𝗁𝖾 𝖽𝖾𝖿 𝗂𝗇𝗂𝗍𝗂𝗈𝗇 𝗂𝗇 𝖲𝖾𝖼𝗍.𝟦.𝟣)

𝖻𝗈𝖽 ∶ 𝖡𝗈𝖽𝗒 =…(𝗍𝗁𝖾 𝖽𝖾𝖿 𝗂𝗇𝗂𝗍𝗂𝗈𝗇 𝖺𝖻𝗈𝗏𝖾 𝗂𝗇 𝗍𝗁𝗂𝗌 𝗌𝖾𝖼𝗍𝗂𝗈𝗇)

𝖼𝗈𝗆 ∶ 𝖢𝗈𝗆𝗉𝗈𝗌𝗂𝗍𝖾 = {(𝖽𝖺𝗍, 𝖻𝗈𝖽)|𝖽𝖺𝗍 ∶ 𝖢𝖫𝖠𝖭 − 𝖡𝗈.𝖻𝗈𝖽}

𝖼𝗈𝗆 ∶ 𝖡𝗈𝗈𝖢𝗈𝗆𝗉𝗈𝗌𝗂𝗍𝖾 =
{(

𝖻𝗈𝗈,
(
}𝖡𝗈𝗈𝗅𝖾𝖺𝗇�

))
|𝖻𝗈𝗈 ∶ 𝖡𝗈𝗈𝗅𝖾𝖺𝗇

}

𝗍𝗋𝖺 ∶ 𝖳𝗋𝖺𝗇𝗌𝖿𝖾𝗋 =(𝖢𝗈𝗆𝗉𝗈𝗌𝗂𝗍𝖾|𝖤𝗋𝗋𝗈𝗋) ↦ (𝖢𝗈𝗆𝗉𝗈𝗌𝗂𝗍𝖾|𝖤𝗋𝗋𝗈𝗋)
𝗒𝗈𝗄 ∶ 𝖸𝗈𝗄𝖾 =(𝖢𝗈𝗆𝗉𝗈𝗌𝗂𝗍𝖾|𝖤𝗋𝗋𝗈𝗋) ↦ (𝖡𝗈𝗈𝖢𝗈𝗆𝗉𝗈𝗌𝗂𝗍𝖾|𝖤𝗋𝗋𝗈𝗋)
𝗍𝗒𝗉 ∶ 𝖳𝗒𝗉𝖾 = 𝖡𝗈𝖽𝗒 × 𝖳𝗋𝖺𝗇𝗌𝖿𝖾𝗋

𝗏𝖺𝗅 ∶ 𝖵𝖺𝗅𝗎𝖾 = 𝖣𝖺𝗍𝖺 × 𝖳𝗒𝗉𝖾

16  These exceptions take place, e.g., when we add a new attribute to a
record or to a database table or if we remove such attribute.

15  They “are closed to predicates” rather than simply “are predicates”
since they assume as values composites and abstract errors rather
than just Boolean values tt and ff. Their logical constructors and, or
and not are the three-valued constructors of John McCarthy’s calcu-
lus defined by “Three-valued propositional calculus”.

SN Computer Science (2020) 1:15 	 Page 15 of 31  15

SN Computer Science

try to add a word to a number or to put a record to a list
of arrays.

Expressions in General

Expressions are syntactic objects and their denotations are
functions from states to composites (data expressions), to
transfers (transfer expressions) or to types (type expres-
sions). To define these concepts we start with the definition
of a state:17,18

As we see, states bind identifiers to values, to types, to
procedures, or to functions (functional procedures), and
besides they may store an error “in a dedicated register”. If
a state does not carry an error, then this register stores ‘OK’.
Every state is therefore a tuple of the form:

(env, (vat, err)) where err : Error | {‘OK’}.

Having defined states, we can define the domains of
expression denotations of three categories:

The denotations of data expressions are partial functions,
due to the fact that data expressions may include functional-
procedure calls.19

The fact that denotations of transfer expressions are just
transfers, rather than functions from states to transfers, is
a consequence of the fact that in our model transfers can-
not be “stored” in states, as it is in the case for data and
types. This is, of course, an engineering decision rather than
a mathematical must. It has been assumed only for the sake
of simplicity.

The three domains are the carriers of an algebra of
expression denotations from which a syntactic (concrete)

𝗌𝗍𝖺 ∶ 𝖲𝗍𝖺𝗍𝖾 = 𝖤𝗇𝗏 × 𝖲𝗍𝗈𝗋𝖾 (state)

𝖾𝗇𝗏 ∶ 𝖤𝗇𝗏 = 𝖳𝗒𝗉𝖤𝗇𝗏 × 𝖯𝗋𝗈𝖤𝗇𝗏 (environment)

𝗌𝗍𝗈 ∶ 𝖲𝗍𝗈𝗋𝖾 = 𝖵𝖺𝗅𝗎𝖺𝗍𝗂𝗈𝗇 ×
(
𝖤𝗋𝗋𝗈𝗋|{}𝖮𝖪�}

)
(store)

𝗏𝖺𝗍 ∶ 𝖵𝖺𝗅𝗎𝖺𝗍𝗂𝗈𝗇 = 𝖨𝖽𝖾𝗇𝗍𝗂𝖿 𝗂𝖾𝗋 ⇒ 𝖵𝖺𝗅𝗎𝖾 (valuation)17

𝗍𝗒𝖾 ∶ 𝖳𝗒𝗉𝖤𝗇𝗏 = 𝖨𝖽𝖾𝗇𝗍𝗂𝖿 𝗂𝖾𝗋 ⇒ 𝖳𝗒𝗉𝖾 (type environment)

𝗉𝗋𝖾 ∶ 𝖯𝗋𝗈𝖤𝗇𝗏 = 𝖨𝖽𝖾𝗇𝗍𝗂𝖿 𝗂𝖾𝗋 ⇒ 𝖯𝗋𝗈𝖼𝖾𝖽𝗎𝗋𝖾|𝖥𝗎𝗇𝖼𝗍𝗂𝗈𝗇 (procedure environment)18

𝖽𝖾𝖽 ∶ 𝖣𝖺𝗍𝖤𝗑𝗉𝖣𝖾𝗇 = 𝖲𝗍𝖺𝗍𝖾→𝖢𝗈𝗆𝗉𝗈𝗌𝗂𝗍𝖾|𝖤𝗋𝗋𝗈𝗋 (data-expressions denotations)
𝗍𝗋𝖺 ∶ 𝖳𝗋𝖺𝖤𝗑𝗉𝖣𝖾𝗇 = 𝖳𝗋𝖺𝗇𝗌𝖿𝖾𝗋 (transfer-expressions denotations)

𝗍𝖾𝖽 ∶ 𝖳𝗒𝗉𝖤𝗑𝗉𝖣𝖾𝗇 = 𝖲𝗍𝖺𝗍𝖾 ↦ 𝖳𝗒𝗉𝖾|𝖤𝗋𝗋𝗈𝗋 (type-expressions denotations)

algebra of expressions is derived (as sketched in “Five steps
to a denotational model”) with the carriers DatExp, TraExp,
TypExp. This leads to three functions of semantics which
constitute a homomorphism between our two algebras.

Data Expressions

Data expressions are evaluated to composites or errors. With
every operation on data, we associate two constructors: of
data-expression denotations and of data expressions. In this
way, we define two mutually similar algebras and a homo-
morphism between them. This homomorphism is unique, is
implicit in the definitions of both algebras, and constitutes
the semantics of data expressions. This section contains just

one example of a syntactic constructor and of the corre-
sponding semantic clause.

Consider the data operation of the numeric division
divide and its syntactic counterpart “/”. The clause of our
grammar (“Equational grammars”) that corresponds to the
syntactic constructor is

(DatExp/DatExp)

In the sequel instead of dealing directly with grammatical
clauses, I shall write them in the form of a syntactic scheme.
In the present case:

(dae-1/dae-2)

where dae-1 and dae-2 are metavariables denoting data
expressions. The corresponding clause of the definition of
semantics is shown below. The syntactic argument is closed
in square brackets.

𝖲𝖽𝖾 ∶ 𝖣𝖺𝗍𝖤𝗑𝗉 ↦ 𝖣𝖺𝗍𝖤𝗑𝗉𝖣𝖾𝗇

𝖲𝗍𝗋𝖾 ∶ 𝖳𝗋𝖺𝖤𝗑𝗉 ↦ 𝖳𝗋𝖺𝖤𝗑𝗉𝖣𝖾𝗇

𝖲𝗍𝖾 ∶ 𝖳𝗒𝗉𝖤𝗑𝗉 ↦ 𝖳𝗒𝗉𝖤𝗑𝗉𝖣𝖾𝗇

17  The metavariable running over valuations is “vat”, since “val” has
been reserved for values.
18  The domains Procedure and Function are defined in “Procedures”.
19  Functional procedures may loop indefinitely and since this is not
a computable property, we cannot expect to have an error message in
that case.

	 SN Computer Science (2020) 1:15 15   Page 16 of 31

SN Computer Science

and analogously for all similar clauses. Intuitively our
definition should be read as follows:

•	 If the input state carries an error, then this error becomes
the final result of the computation.

•	 Otherwise, we evaluate both component expressions, and
if one of these evaluations does not terminate, then (of
course) the whole computation does not terminate.

•	 Otherwise, we check the bodies of both resulting com-
posites and if one of them is not (‘number’), then an
appropriate error is generated.

•	 Otherwise, we check if the second argument of the divi-
sion is zero, in which case an error is generated.

•	 Otherwise, we check if the result of the division is not
oversized in which case an error is generated.20

•	 Otherwise, the result of division becomes part of the
resulting composite.

Transfer expressions

Transfer expressions evaluate to transfers or errors. Since
transfers are not usual in programming languages—at least
not as we define them—a few examples may be in order.

Below the “current composite” means the composite which
is the (only) argument of the transfer.

273 ― the resulting composite is
(273, (‘number)) independently
of the current composite

record.price ― if the current composite carries a
record with an attribute price, its
body (‘number’) and its data dat,
then the resulting composite is (dat,
(‘number’)), and otherwise is an
error

all-list number ee ― this is a yoke; if the current composite
does not carry a list, then an error is
generated, otherwise, if it is a list of
numbers then the resulting composite
is (tt, (‘Boolean’)), and otherwise, it
is (ff, (‘Boolean’))

record.price +
record.vat < 1000

― this is a yoke; if the current composite
does not carry an appropriate record,
then error; otherwise, if the sum of
data assigned to price and vat is
less than 1000, then (tt, (‘Boolean’)),
and otherwise (ff, (‘Boolean))

Now, let us consider a transfer expression with the asyn-
tactic scheme

all-list tre ee.
Such an expressions is satisfied if all elements of a cur-

rent list satisfy the transfer tre. The semantic clause is the
following:

20  In our definitions, this part of the procedure is described in an
abstract way, but the implementation does not need to preform it lit-
erarly, i.e., by first dividing the given numbers and only then checkig,
if that was possible. In an implementation a programmable solution
should be chosen.

Sde.[(dae-1 / dae-2)].sta =
let

(env, (val, err)) = sta
err ≠ ‘OK’ err
Sde.[dae-i].sta = ? ? for i = 1,2
let

num-i = Sde.[dae-i]. (env, (val, err)) for i = 1,2
num-i : Error num-i for i = 1,2
let

(dat-i, bod-i) = num-i for i = 1,2
bod-i ≠ (‘number’) ‘number-expected’ for i = 1,2
dat-2 = 0 ‘division-by-zero’
let

dat-3 = divide(dat-1, dat-2)
oversized.dat-3 ‘overflow’
true (dat-3, (‘number’))

In the above definition the clause
Sde.[dae-i].sta = ? ? for i = 1,2

stands for
Sde.[dae-1].sta = ?
Sde.[dae-2].sta = ?

SN Computer Science (2020) 1:15 	 Page 17 of 31  15

SN Computer Science

This definition may be intuitively read as follows:

1.	 If the current composite is an error, then the result is this
error.

2.	 Otherwise, if the current composite does not carry a list,
then an error is signalized.

3.	 Otherwise, the transfer Stre.[tre] is applied to compos-
ites created from the data dat-i of the list and the “inter-
nal body” bod of the list. Notice that lists carry data,
rather than composites.

4.	 If one of these composites is an error, then the first such
an error is the result of the computation.

5.	 If one of these composites is not a Boolean composite,
then an error is generated.

6.	 If all resulting composites are (tt, (‘Boolean’)), then the
resulting composite is (tt, (‘Boolean’)); otherwise, it is
(ff, (‘Boolean’)).

Type expressions

Type expressions evaluate to types or errors. E.g., the deno-
tation of the type expression:
record-type

ee
is a function on states that creates a record type or gener-

ates an error. This expression refers to two built-in types
word and number and one user-defined type number-
array (arrays of numbers).

Now, consider an example of a syntactic scheme of an
expression that creates a one-attribute record type:

record-typeideastex ee

��-���� �� ����,

��-���� �� ����,

�����-���� �� ������,

�����-����� �� ������-�����,

������ �� ������,

����� �� ������

where ide is an identifier and tex is a type expression.
The corresponding semantic clause is the following:

Ste.[record-type ide as tex ee].sta =
let

(env, (val, err)) = sta
err ≠ ‘OK’ err
let

typ = Ste.[tex]. sta
typ : Error typ
true ((‘R’, [ide/typ]), TT)

This clause is read as follows:

1.	 If the input state carries an error, then this error becomes
the result of the computation.

2.	 Otherwise, we compute the type defined by tex, and if
it is an error, then this error becomes the result of the
computation.

3.	 Otherwise, the resulting type is the record type ((‘R’,
[ide/typ]), TT).

To construct a many-attribute record type, we use the
operation of adding an attribute to a given record type with
the following syntactic scheme:

expand-record-type tex-1 at ide by tex-2 ee,

and to replace a current transfer of an arbitrary type defined
by tex by a new transfer tre, we use a type expression with
a scheme:

replace-transfer-in tex by tre ee

The Concrete Syntax of Expressions

The full grammar of the syntax of expressions is shown in
Sect. 5.4.2 of [16]. Below, only an excerpt of it is given:

Stre.[all-list tre ee].com =
com : Error com
sort.com ≠ ‘L’ ‘list-expected’
let

((dat-1,…,dat-n), (‘L’, bod)) = com (list elements always have the same
body)

com-i = Stre.[tre].(dat-i, bod) for i = 1;n
com-i : Error com-i for i = 1;n
not com-i : BooComposite ‘a-yoke-expected’
(∀ i = 1;n) com-i = (tt, (‘Boolean’)) (tt, (‘Boolean’))
true (ff, (‘Boolean’))

	 SN Computer Science (2020) 1:15 15   Page 18 of 31

SN Computer Science

In the first line of this clause, the metavariables number
and word represent the fact that all numbers and words up to
a certain size are acceptable as expressions. At the level of
implementation, an appropriate lexical analyzer is defined.
The keyword glue corresponds to the concatenation of
words.

In the syntax of type expressions number and word
denote themselves, i.e., the names of simple types.

The Colloquial Syntax of Expressions

As was already explained, colloquial syntax includes all con-
crete syntax which means that the use of colloquialisms is
optional. On the algebraic level, each colloquialism is a new
constructor, which makes the algebra of colloquial syntax
not similar to the algebra of concrete syntax. Below three
examples of colloquialisms described informally:

1. x or y or z means (x or (y or z)) ,
2. x + y + z + x*y means (x + y) + z) + (x*z)
3. array [x, x+y, 3*y] means

add-to-arr
add-to-arr

array x ee
new x+y ee

new 3*y ee

where add-to-arr corresponds to a record constructor that
adds a new element to an array.

���∶ ������ =

���� | ����� | ������ |����|
������� ��� | (������ ��� ������) | (������ �� ������)… |
(������ + ������) | (������∕������) |������ ���� ������|
���� ������ �� | ���� ������ �� ������ �� | ���(������)|
…

�� ������ ���� ������ ���� ������ � �

���∶ ������ =

��� |��� | (������ + ������) | (������∕������)|
���(������)|���(������)|

…

���∶ ������ =

������� | ������ | ����|
������� ��� | ����-���� ������ �� | �����-���������� ��|
������-���� ������� ��� �� ������ ��|

…

The imperative Layer of the Language

Expressions of all types belong to an applicative layer of
Lingua. Their denotations use states as arguments, but nei-
ther create them nor change. The latter tasks are performed
by instructions, variable declaration, procedure- and func-
tion declarations and by type definitions. All of them belong
to an imperative layer of the language.

Some Auxiliary Concepts

Two new metapredicates are necessary to define the seman-
tics of the imperative layer of our language.

The metapredicate

is-error : State ↦ {tt, ff}

returns tt whenever a state carries an error.
We say that body bod-1 is coherent with bod-2, in

symbols

bod-1 coherent bod-2

whenever:

1.	 bod-1 = bod-2 or
2.	 they are record bodies, and one of them results from the

other by adding or by removing an attribute.

We also introduce an operator of inserting an error into
a state:

◄ : State ↦ State
(env, (vat, err)) ◄ error = (env, (vat, error)).

Instructions

Instructions change states, and therefore instruction denota-
tions are partial functions from states to states:

ind : InsDen = State → State

The partiality results from the fact that the execution of
an instruction may be infinite (an instruction may loop). The
semantics of instructions is a function

Sin : Instruction ↦ InsDen

Contrary to expression denotations which may gener-
ate an error, instruction denotations write an error into the
error register of a state. The denotations of the majority of
instructions are transparent relative to error-carrying states,

SN Computer Science (2020) 1:15 	 Page 19 of 31  15

SN Computer Science

i.e., they do not change such a state but only pass it to the
subsequent parts of the program. However, an error may
also cause an error-handling action (see Sect. 6.1.8 of [16]).

The basic instruction is, of course, an assignment of a
value to a variable identifier. The syntactic scheme of an
assignment is:

ide : = dae
and the corresponding semantic clause is the following:

The denotation of an assignment changes an input state
into an output state in nine steps:

1.	 If an input state carries an error, then this state becomes
the output state.

2.	 Otherwise, if the identifier ide has not been declared,
i.e., if no value or a pseudo-value has been assigned to
it in the valuation val, then an error message is loaded
to the error register.

3.	 Otherwise, if an attempt to evaluate the data expression
leads to an infinite execution, then (of course) the execu-
tions of the instruction is infinite as well.

4.	 Otherwise, if the expression evaluates to an error, then
this error is loaded to the error register of the state.

5.	 Otherwise, if the transit applied to the new composite
returns an error, then this error is loaded to the error
register.

6.	 Otherwise, if the composite computed from the expres-
sion has a body non-coherence with the body of the
identifier’s type, then an error is loaded to the error reg-
ister.

7.	 Otherwise, if the composite computed by the transit is
not Boolean, i.e., if the transit was not a yoke, then an
error is loaded to the error register.

8.	 Otherwise, if the yoke is not satisfied, then an error mes-
sage is loaded to the error register.

9.	 Otherwise, the new value is the new composite and the
current (i.e., not changed) yoke, and this new value is
assigned to the identifier ide.

Notice that as a consequence of claim 6, together with
the definition of the coherence of bodies (“Some auxiliary
concepts”, an assignment may change the body of a value
assigned to a variable only if this body is a record, and only
by adding or by removing an attribute to/from that record.

The remaining instructions belong to one of the following
seven categories where the first four are atomic instructions,
and the other three are structural instructions, i.e., instruc-
tions composed of other instructions and expressions:

1.	 the replacement of a yoke assigned to a variable by
another one

yoke ide : = tre,

2.	 the empty instruction

skip,

3.	 the call of an imperative procedure

call ide (ref apar-r val apar-v)

Sin.[ide := dae].sta =
is-error.sta sta
let

((tye, pre), (vat, ‘OK’)) = sta
vat.ide = ? sta ◄ ‘identifier-not-declared’
Sde.[dae].sta = ? ? (an infinite execution)
Sde.[dae].sta : Error sta ◄ Sde.[dae].sta
let

((dat-f, bod-f), tra) = vat.ide (f – former)
(dat-n, bod-n) = Sde.[dae].sta (n – new)
com = tra.(dat-n, bod-n)

com : Error sta ◄ com
not bod-n coherent bod-f sta ◄ ‘no-coherence’
not com : BooComposite sta ◄ ‘a-yoke-expected’
com = (ff, (‘Boolean’) sta ◄ ‘yoke-not-satisfied’
let

val-n = ((dat-n, bod-n), tra)
true ((tye, pre), (vat[ide/val-n], ‘OK’))

	 SN Computer Science (2020) 1:15 15   Page 20 of 31

SN Computer Science

where apar-r and apar-v are lists (maybe empty) of
identifiers called, respectively, actual reference param-
eters and actual value parameters,

4.	 the activation of an error handling

if dae do ins fi,

5.	 the conditional composition of instructions

if dae then ins-1 else ins-2 fi,

6.	 the loop

while dae do ins od,

7.	 the sequence of instructions

ins-1; ins-2.

In the yoke-replacement instruction, the new value of the
identifier ide gets the old composite but a new transfer. This
transfer must be satisfied with the current composite.21

The empty instruction skip is needed to make functional-
procedure declarations sufficiently universal; this will be
seen in “Procedures”.

The discussion of procedures is postponed to
“Procedures”.

The error handling is activated if the current state carries
an error, i.e., a word that is equal to the word that the data-
expression dae evaluates to. If this happens, the “internal”
instruction ins is executed for a state that results from the
initial state where the current error has been replaced by
‘OK’.22

The semantics of the three remaining categories of
instruction is as usual, except that in 5 and 6 an expression
may generate an error message. In such a case that error is
stored in the error register of the state.

Variable Declarations and Type Definitions

Variable-declaration denotations are total functions that
map states into states:

vdd : VarDecDen = State ↦ State

assigning types to identifiers and leaving their data unde-
fined, i.e., assigning pairs of the form (Ω, typ). The syntactic
scheme of a single declaration is of the form:

let ide be tex tel

Variable declarations are similar to assignments with the dif-
ference that for a declaration an error ‘identifier-not-free’ is
signalized whenever the identifier ide is bound in the input
state. It means that a variable may be declared in a program
only once. During program execution, the value assigned to
a variable may be changed only by changing:

•	 the composite of the value by an assignment instruction,
•	 the yoke of the value by a yoke replacement.

Type definitions are of the form:

set ide as tex tes

and their denotations are similar to those of variable dec-
larations, i.e.,

tdd : TypDefDen = State ↦ State

with the difference that instead of assigning a pseudo-
value to a variable identifier in a valuation, they assign a type
to a type-constant identifier in a type environment.

An identifier that is bound to a type in a state is called
a type constant. Notice that we call it “a constant” rather
than “a variable”, since a type once assigned to an identifier
cannot be changed in the future (an engineering decision).

Similarly to the case of assignments, also type definitions
and variable declarations may be combined sequentially
using a semicolon constructor.

Procedures

Procedures in Lingua may be imperative or functional. The
former are functions that take two lists of actual parame-
ters—value parameters and reference parameters—and
return partial functions on stores.23 Functional procedures
take only value parameters and return partial functions from
states to composites or errors:

In these equations, ActPar is a domain of actual-param-
eter lists defined by the domain equation:

apa : ActPar = () | Identifier | ActPar × ActPar.

As we see, actual-parameter lists are finite (maybe empty)
sequences of identifiers. In turn, formal-parameter lists that

𝗂𝗉𝗋 ∶ 𝖨𝗆𝗉𝖯𝗋𝗈 = 𝖠𝖼𝗍𝖯𝖺𝗋 × 𝖠𝖼𝗍𝖯𝖺𝗋 ↦ 𝖲𝗍𝗈𝗋𝖾 → 𝖲𝗍𝗈𝗋𝖾

𝖿𝗉𝗋 ∶ 𝖥𝗎𝗇𝖯𝗋𝗈 = 𝖠𝖼𝗍𝖯𝖺𝗋 ↦ 𝖲𝗍𝗈𝗋𝖾 →(𝖢𝗈𝗆𝗉𝗈𝗌𝗂𝗍𝖾|𝖤𝗋𝗋𝗈𝗋)

23  The fact that procedures transform stores rather than states is
a technique (introduced in [17]) that allows to define recursion in
avoiding the self-application of procedures, i.e., a situation where a
procedure takes itself as an argument. Of course, procedure calls are
instructions and therefore they transform states into states.

21  This instruction has been introduced mainly for the sake of SQL
tables discussed in [16].
22  For details see Sect. 6.1.8 of [16].

SN Computer Science (2020) 1:15 	 Page 21 of 31  15

SN Computer Science

appear in procedure declarations are finite (maybe empty)
sequences of pairs consisting of an identifier and a type-
expression denotations:

fpa : ForPar = () | Identifier × TypExpDen | ForPar ×
ForPar.

Returning to procedures, notice that we do not talk here
about “procedure denotations” but about “procedures” as
such, since they are purely denotational concepts. In other
words, they do not have syntactic counterparts. At the level
of syntax, we have only procedure declarations and proce-
dure calls which, of course, have their denotations.

A syntactic scheme of an imperative-procedure declara-
tion is of the following form (the carriage returns are of
course syntactically irrelevant):

where pro is a program (see later) and fpar-r and fpar-v are
the lists of, respectively, formal reference parameters and
formal value parameters. A syntactic example of a list of
formal parameters may be as follows:

(val age, weight as number, name as word,
ref patient as patient-record)

Expressions different from single-identifier expressions
are not allowed as value parameters since such a solution
would complicate the model as well as program-construction
rules (an engineering decision).

If we want to declare a group of mutually recursive pro-
cedures, we use a multiprocedure declaration of the form:

where the ipd’s are imperative-procedure declarations.
Intuitively this means that these procedure declarations have
to be elaborated (compiled) “as a whole”, rather than one
after another (details in Sect. 7.4 of [16]).

The syntactic scheme of a functional-procedure declara-
tion is of the form:

���� ��� (��� ����-� ��� ����-�)

���

��� ����

����� ���������

���-�;

���-�;

…

���-�

��� ���������

��� ���(����)

���

������ ��� �� ���.

A call of a functional procedure declared in this way
first executes the program pro and then evaluates the data
expression dae in the output state of the program. If the
composite generated by that expression is of the type defined
by the type expression tex, then this composite becomes
the result of the call of the function. Otherwise, an error is
signalized.

In particular, the program in a functional-procedure dec-
laration may be the trivial instruction skip—which “does
nothing”—and the exporting expression may be a single
identifier.

The (concrete) syntactic schemes of an imperative-proce-
dure call and a functional-procedure call are, respectively:

Notice that the second call has no reference parameters
since functional procedures do not have any side effects—
they do not modify a state (an engineering decision).

All types and procedures defined in the hosting program
before (see “Procedures”) the declaration of a procedure are
visible in the body of this procedure and therefore do not
need to be passed as parameters (an engineering decision).

In the version of Lingua described in the present paper,
procedures cannot take other procedures as parameters.
However, it is shown in Sect. 7.6 of [16] how to construct
a hierarchy of procedures that can take procedures of lower
rank as parameters. This construction protects procedures
from taking themselves as parameters which would lead to
denotational models that cannot be defined within naïve set
theory (a mathematical decision).

The Execution of a Procedure Call

In the description of procedure mechanisms, we use some
concepts having to do with the fact that procedures are cre-
ated when they are declared and are executed when they
are called. In respect to that, we shall talk about states (and
their components) of a declaration-time and of a call-time
respectively.24 Traditionally by a procedure body, we mean
the program that is executed when a procedure is called.

As has been already announced in the Introduction, there
are no global variables in procedures (an engineering deci-
sion).25 The intention is that the head of a procedure call
describes explicitly and completely the communication
mechanisms between a procedure and the hosting program.
That solution may seem restrictive but—in my opinion—
guarantees a better understanding of program functionality

���� ���(��� ����-� ��� ����-�) imperative-procedure call

���(����-�) functional-procedure call

24  These ideas, similarly to a few others, have been borrowed from
Gordon [22].
25  If we would like to introduce global variables, we should define
the local store of a procedure call as a modification of its global store.

	 SN Computer Science (2020) 1:15 15   Page 22 of 31

SN Computer Science

by programmers and definitely simplifies program-construc-
tion rulers.

Execution of a procedure call may be intuitively split
into four stages illustrated in Fig. 5 (formal definitions in
Sect. 7.3 of [16]).

1.	 The inspection of an initial global state—that state con-
sists of:

(a)	 an initial global environment env-ig,
(b)	 an initial global store sto-ig = (vat-ig, err).
	  If err ≠ ‘OK’, then the initial global state is

returned by procedure call and therefore becomes
the terminal global state. In the opposite case, an
initial local state is created.

2.	 The creation of an initial local state—that state consists
of:

(a)	 initial local environment env-il created from the
declaration-time environment by nesting in it the
called procedure; this nesting is necessary to ena-
ble recursive calls,

(b)	 initial local valuation vat-il covering only formal
parameters with assigned values of corresponding
actual parameters; to get the latter values, we refer
to initial global valuation val-ig.

3.	 The transformation of the local initial state by executing
the procedure body. If this execution terminates, then the
local terminal state consists of:

(a)	 terminal local environment env-tl,
(b)	 terminal local store sto-tl = (val-tl, err-tl).
	  If err-tl ≠ ‘OK’, then a global terminal state is

created from the initial global state by loading
to it err-tl. Notice that in this case, the terminal
local environment and the terminal local store are
“abandoned”. Otherwise, the terminal global state
is created.

4.	 The creation of the terminal global state—that state con-
sists of:

	  initial global environment env-ig; notice that terminal
local environment env-tl is “abandoned”,

	  terminal global store sto-tg created from initial global
store sto-ig by “returning” to it the values of formal
referential parameters (stored in sto-tl) and assigning
them to the corresponding actual referential parameters.

Notice that the initial local environment “inherits” all
types and procedures from the declaration-time environ-
ment. The procedure body may use its own local environ-
ment types and procedures, but after the completion of the

Fig. 5   The execution of a procedure call

SN Computer Science (2020) 1:15 	 Page 23 of 31  15

SN Computer Science

call they cease to exist, since the hosting program returns to
the initial global environment.

It is to be underlined that the procedure body may access
only that part of the environment which was created before
the procedure declaration.

Of a similar character is the local valuation that is created
only in procedure execution time, although in this case the
values or reference parameters stored in it are eventually
returned to the terminal global valuation.

Summarizing the visibility rules concerning procedure
call:

1.	 the only variables visible in the procedure body are for-
mal parameters plus variables local to the body (declared
in it),

2.	 the only types and procedures visible in the procedure
body are declaration-time types and procedures plus
locally declared ones,

3.	 variables, types, and procedures declared in the proce-
dure body are not visible outside of the procedure call.

All these choices are not mathematical necessities, but
pragmatic engineering decisions dictated by the intention of
making our model relatively simple which should contribute
to the simplicity of program construction rules and to a bet-
ter understanding of programs by language users.

Procedures in Lingua may call themselves recursively
either directly or indirectly. At the level of semantic clauses,
this leads to recursive definitions of the denotations of pro-
cedure declarations. For formal definitions, see Sect. 7.3.2
in [16].

Preambles and Programs

Each program in Lingua consists of a preamble followed by
an instruction. The syntactic scheme of a program is there-
fore of the form:

begin-program pam; ins end-program

where pam is a preamble.
Preambles are sequential compositions of type-constant

definitions, data-variable declarations and procedure decla-
rations. Their syntax is defined by the following grammatical
clause:

��� ∶ �������� =

���������|�����������|���������|
����� |
�����|����|
��������;��������

Similarly to instructions also preambles contain skip
which represent an identity state-to-state function. The
semantics of programs and preambles are the following
functions:

which are defined by structural induction:
Spr.[pam; ins] = Spre.[pam] · Sin.[ins]

and

Spre.[ipd] = Sipd.[ipd]
Spre.[mpd] = Smpd.[mpd]
…
Spre.[pam-1; pam-2] = Spre.[pam-1] · Spre.[pam-2]

Intuitively, the clauses for preambles are read as follows:

•	 the semantics of preambles applied to imperative-pro-
cedure declarations coincide with the semantics of such
declarations,

•	 the semantics of preambles applied to multiprocedure
declarations coincide with the semantics of such declara-
tions,

•	 …
•	 the denotation of a sequential composition of preambles

is a sequential composition of their denotations.

Programs with the trivial preamble skip—if executed
“without a context”—will always generate an error, unless
they (the programs) are the skip themselves. Such pro-
grams are allowed because they may appear in procedure
declarations as the bodies of procedures without locally
declared objects. In turn, programs with trivial preambles
and instructions are allowed in the declarations of functional
procedures.26

The Carriers of Our Algebra of Denotations

These carriers are listed below. For each of them there is a
corresponding carrier in the algebra of syntax.

𝖲𝗉𝗋 ∶ 𝖯𝗋𝗈𝗀𝗋𝖺𝗆 ↦ 𝖯𝗋𝗈𝖣𝖾𝗇

𝖲𝗉𝗋𝖾 ∶ 𝖯𝗋𝖾𝖺𝗆𝖻𝗅𝖾 ↦ 𝖯𝗋𝖾𝖣𝖾𝗇

26  Both these solutions, although in a slightly different form, have
been suggested to me by Andrzej Tarlecki.

	 SN Computer Science (2020) 1:15 15   Page 24 of 31

SN Computer Science

Lingua‑SQL

General Assumptions About the Model

The denotational model of Lingua-SQL is built as an exten-
sion of the model of Lingua by adding:

1.	 new data domains corresponding to databases, tables,
rows, and specific SQL data,

2.	 new constructors defined on these domains.

Data, Bodies, and Composites

So far, values in Lingua consisted of a composite and a
transfer. This principle is kept in Lingua-SQL for values
carrying simple data, rows and tables, but in the case of data-
bases, values are records of tables supplemented by graphs
of subordination relations (“Database values”).

In Lingua-SQL lists, records and arrays do not carry
rows, tables, and databases, and table fields do not contain
lists, records, and arrays. On the other hand, the extended
repertoire of simple SQL values is available for the construc-
tors of lists, records and arrays.

Simple data which are new in Lingua-SQL are associated
with time, i.e., with calendars and clocks:

where Year, Month, Day, Hour, Minute, and Second are
defined as finite sets of numbers in an obvious way. Since
simple data play a special role in SQL, we need a domain
of such data:

𝗂𝖽𝖾 ∶ 𝖨𝖽𝖾𝗇𝗍𝗂𝖿 𝗂𝖾𝗋 (identifiers)

𝖽𝖾𝖽 ∶ 𝖣𝖺𝗍𝖤𝗑𝗉𝖣𝖾𝗇 = 𝖲𝗍𝖺𝗍𝖾 → 𝖢𝗈𝗆𝗉𝗈𝗌𝗂𝗍𝖾𝖤 (data-expression denotations)

𝗍𝗋𝖺 ∶ 𝖳𝗋𝖺𝖤𝗑𝗉𝖣𝖾𝗇 = 𝖳𝗋𝖺𝗇𝗌𝖿𝖾𝗋 (transfer-expression denotations)

𝗍𝖾𝖽 ∶ 𝖳𝗒𝗉𝖤𝗑𝗉𝖣𝖾𝗇 = 𝖲𝗍𝖺𝗍𝖾 ↦ 𝖳𝗒𝗉𝖾𝖤 (type-expression denotations)

𝗏𝖽𝖽 ∶ 𝖵𝖺𝗋𝖣𝖾𝖼𝖣𝖾𝗇 = 𝖲𝗍𝖺𝗍𝖾 ↦ 𝖲𝗍𝖺𝗍𝖾 (variable-declaration denotations)

𝗍𝖽𝖽 ∶ 𝖳𝗒𝗉𝖣𝖾𝖿𝖣𝖾𝗇 = 𝖲𝗍𝖺𝗍𝖾 ↦ 𝖲𝗍𝖺𝗍𝖾 (type-constant denotations)

𝗂𝗇𝖽 ∶ 𝖨𝗇𝗌𝖣𝖾𝗇 = 𝖲𝗍𝖺𝗍𝖾 → 𝖲𝗍𝖺𝗍𝖾 (instruction denotations)

𝖿𝗉𝖺 ∶ 𝖥𝗈𝗋𝖯𝖺𝗋 =(𝖨𝖽𝖾𝗇𝗍𝗂𝖿 𝗂𝖾𝗋 × 𝖳𝗒𝗉𝖤𝗑𝗉𝖣𝖾𝗇)𝖼∗ (formal parameters)

𝖺𝗉𝖺 ∶ 𝖠𝖼𝗍𝖯𝖺𝗋 = 𝖨𝖽𝖾𝗇𝗍𝗂𝖿 𝗂𝖾𝗋𝖼 ∗ (actual parameters)

𝗂𝗉𝖼 ∶ 𝖨𝗉𝗋𝖢𝗈𝗆𝗉𝗈𝗇𝖾𝗇𝗍𝗌 = 𝖨𝖽𝖾𝗇𝗍𝗂𝖿 𝗂𝖾𝗋 × 𝖥𝗈𝗋𝖯𝖺𝗋 × 𝖥𝗈𝗋𝖯𝖺𝗋 × 𝖯𝗋𝗈𝖣𝖾𝗇 (imperative-procedure components)

𝖼𝗆𝗉 ∶ 𝖬𝗉𝗋𝖢𝗈𝗆𝗉𝗈𝗇𝖾𝗇𝗍𝗌 = 𝖨𝗉𝗋𝖢𝗈𝗆𝗉𝗈𝗇𝖾𝗇𝗍𝗌𝖼+ (multiprocedure components)

𝖿 𝖿𝖼 ∶ 𝖥𝗉𝗋𝖢𝗈𝗆𝗉𝗈𝗇𝖾𝗇𝗍𝗌 = 𝖨𝖽𝖾𝗇𝗍𝗂𝖿 𝗂𝖾𝗋 × 𝖥𝗈𝗋𝖯𝖺𝗋 × 𝖯𝗋𝗈𝖣𝖾𝗇 × 𝖣𝖺𝗍𝖤𝗑𝗉𝖣𝖾𝗇 × 𝖳𝗒𝗉𝖤𝗑𝗉𝖣𝖾𝗇 (functional procedure components)

𝗂𝖽𝖽 ∶ 𝖨𝗉𝗋𝖣𝖾𝖼𝖣𝖾𝗇 = 𝖲𝗍𝖺𝗍𝖾 ↦ 𝖲𝗍𝖺𝗍𝖾 (imperative-procedure-declarations denotations)

𝗆𝗉𝖽 ∶ 𝖬𝗎𝗅𝖯𝗋𝗈𝖣𝖾𝖼𝖣𝖾𝗇 = 𝖲𝗍𝖺𝗍𝖾 ↦ 𝖲𝗍𝖺𝗍𝖾 (multiprocedure-declarations denotations)

𝖿𝖽𝖽 ∶ 𝖥𝗉𝗋𝖣𝖾𝖼𝖣𝖾𝗇 = 𝖲𝗍𝖺𝗍𝖾 ↦ 𝖲𝗍𝖺𝗍𝖾 (function-declaration denotations)

𝗉𝖽𝖾 ∶ 𝖯𝗋𝖾𝖣𝖾𝗇 = 𝖲𝗍𝖺𝗍𝖾 → 𝖲𝗍𝖺𝗍𝖾 (preamble denotations)

𝗉𝗋𝖽 ∶ 𝖯𝗋𝗈𝖣𝖾𝗇 = 𝖲𝗍𝖺𝗍𝖾 → 𝖲𝗍𝖺𝗍𝖾 (program denotations)

��� ∶ ���� = ���� ×����� × ���

��� ∶ ���� = ���� ×������ × ��
���

��� ∶ �������� = ���� × ����

sda : SimData = Boolean | Number | Word | Date |
Time | DateTime | {⊖}

All former constructors with simple data as arguments—
e.g., that add a new attribute to a record—are extended in an
obvious way to the new domain.

To include rows and tables with empty fields in our
model, we introduce an empty data ϴ.27 This data will never
appear as a value of an expression and will never be assigned
to a variable.

With the extended set of simple data, we can extend the
set of corresponding operations, e.g., by allowing to add a
number to a date. I do not define such operations explicitly
assuming that their class is a parameter of our model.

The subcategories of numbers such as INTEGER,
SMALLINT, BIGINT, DECIMAL(p, s), or of words
CHARACTER(n), CHARACTER VARYING(n), BLOB,
will correspond to yokes rather than to types.

As was already announced, we introduce two new sorts
of structural data:

At the level of domain equations, tables may contain rows
of different length and different attributes. However, such
tables will not be reachable in the algebra of composites.

Data bases do not appear at the level of data. They are
defined only at the level of values (“Database values”).

Similarly, as in Lingua, all SQL data have corresponding
bodies. The bodies of new simple data are defined as one-
element tuples of words; hence:

𝗋𝗈𝗐 ∶ 𝖱𝗈𝗐 = 𝖨𝖽𝖾𝗇𝗍𝗂𝖿 𝗂𝖾𝗋 ⇒ 𝖲𝗂𝗆𝖣𝖺𝗍𝖺

𝗍𝖺𝖻 ∶ 𝖳𝖺𝖻𝗅𝖾 = 𝖱𝗈𝗐𝖼∗

27  Notice that ϴ, which is assignable to fields of rows and tables, is
different from Ω which is assigned to a variable at the declaration
time.

SN Computer Science (2020) 1:15 	 Page 25 of 31  15

SN Computer Science

sbo : SimBody = {(‘Boolean’), (‘number’), (‘word’),
(‘date’), (‘time’), (‘date-time’)}

The bodies of new structural data are defined by the
equations:

As one can guess from these definitions, the composites
of rows in a table will have a common body. The row con-
tained in a table body carries the information about default
data for columns. Its list of attributes must coincide with
the list of the attributes of the corresponding row body. This
property will be insured by table-body constructors.

The domain BodyE is extended by new simple bodies
and the bodies of rows and tables.

The function CLAN-Bo from Lingua is extended in an
obvious way on row bodies. In the case of table bodies, we
assume that each row of a table must have an appropriate
record structure and that in each field with a non-empty
default value there is a non-empty value. Of course, it does
not need to be a default value. The latter are used when add-
ing to a table a new row or a new column.

We assume that the empty table—a table with an empty
tuple of rows—belongs to the clan of every table body.

The domain CompositeE is appropriately extended by
composites associated with new simple data, row data, and
table data. Additionally, we introduce an auxiliary domain
of simple composites:

com : SimCom = {(dat, bod) | (dat, bod) : CompositeE
and bod : SimBody}

and we also assume that (ϴ, bod) is a composite for every
simple bod.

The Subordination of Tables

Subordination relations describe the binary relationships that
can hold between tables. Let then A and B be tables and let
ide be an attribute that appears in both of them. Let A.ide
and B.ide be the corresponding columns in these tables.

We say that A is subordinate to B at ide or that A is a
child and B is a parent that we write as

A sub[ide] B
if the following three conditions are satisfied:

1.	 an ide-column appears in both tables; the identifier ide
is called the subordination indicator,

2.	 the column B.ide is repetition-free,

𝖻𝗈𝖽 ∶ 𝖱𝗈𝗐𝖡𝗈𝖽𝗒 ={}𝖱𝗊’} × 𝖱𝗈𝗐𝖱𝖾𝖼

𝗋𝗈𝗋 ∶ 𝖱𝗈𝗐𝖱𝖾𝖼 = 𝖨𝖽𝖾𝗇𝗍𝗂𝖿 𝗂𝖾𝗋 ⇒ 𝖲𝗂𝗆𝖡𝗈𝖽𝗒

𝖻𝗈𝖽 ∶ 𝖳𝖺𝖻𝖡𝗈𝖽𝗒 ={}𝖳𝗊’} × 𝖱𝗈𝗐 × 𝖱𝗈𝗐𝖡𝗈𝖽𝗒.

3.	 the column A.ide contains only the data that appear in
B.ide.

The points 2. and 3. together mean that each row of A unam-
biguously points to a row in B. By a subordination graph we
mean any finite set of triples of identifiers denoted by Sub.
(Identifier × Identifier × Identifier) ,28 hence

sgr: SubGra = Sub.(Identifier × Identifier × Identifier)

Each tuple (ide-c, ide, ide-p) in sgr is called an edge of the
subordination graph, where ide-c (child) and ide-p (parent)
play the role of graph nodes, and ide is a label of the edge.
In the context of a given state, each edge expresses the fact
that a subordination relation holds between the tables named
ide-c and ide-p where ide is the subordination indicator.

About the subordination graphs, we assume only that ide-
c ≠ ide-p, although such graphs may contain cycles. Notice
also that there may be many edges starting in one node (one
child may have many parents), and many edges may end in
one node (many children may have a common parent).

Transfers

Types—as we understand them in this paper—are men-
tioned in many SQL manuals only in the context of simple
data and even in that case in a very unclear and incomplete
way. The types of tables are implicit in table declarations,
and the types of rows, columns, and databases are totally
absent. In table declarations, the descriptions of bodies are
mixed with the description of yokes, and with database
instructions, and are called integrity constraints.29

Unfortunately, in none of the SQL manuals known to me
(their list is given in the preamble to Sect. 11 of [16]), I have
found a complete description of integrity constraints. Although
all of them have a certain common part, besides that part, each
manual offers different ideas. In this situation, I decided to con-
struct such a model of SQL types that would cover a “suffi-
ciently large” spectrum of types that appear in SQL applications.

Since in Lingua-SQL there are no database composites,
there will not be database transfers either. The properties of
databases will be described by:

•	 the yokes referring to their tables,
•	 subordination graphs which are only seen at the level of

values.

We assume that in Lingua-SQL we have all so-far-
defined transfer constructors, and in particular—Boolean

29  For a justification of this criticism see Sect. 11 of [16].

28  Notice that since the set Identifier is finite, each subordination
graph is finite as well.

	 SN Computer Science (2020) 1:15 15   Page 26 of 31

SN Computer Science

constructors. New constructors will generate transfers on
new simple composites—these are regarded as the param-
eters of our model—plus row and table transfers.

The row transfers are analogous to record transfers of
Lingua. Table transfers split into two classes.

The first contains quantified table yokes which describe
table properties by row yokes that should be satisfied for all
rows of a table.

Notice that although quantified table yokes express prop-
erties of table rows explicitly, they express implicitly—due
to quantifiers—some properties of columns, such as, e.g.,
that each element of a column is a number. This technique
does not allow, however, to express properties of columns
regarded as a whole, e.g., that a column is ordered or that it
does not contain repetitions. To express such properties, we
need special column-dedicated yoke constructors. Here is
one example of such a constructor:

no-repetitions-tb : Identifier ⟼ Transfer
no-repetitions-tb.ide.com =

com : Error com
sort.com ≠ ‘Tq’ ‘table-expected’
let

col = Cc[get-co-from-tb].(ide, com)
col : Error col
true no-repetitions.col

We create a tuple of composites col using a constructor
Cc[get-co-from-tb] which selects a column from a table
(for a formal definitions see Sect. 12.2.7 of [16]). This is a
column assigned to the attribute ide. Then we check if this
tuple satisfies a universal predicate no-repetitions. The cre-
ated column does not contain the element that corresponds
to the row of default values.

Since we have Boolean constructors among the con-
structors of yokes, we can use them to construct yokes that
express properties of several columns of a table and all of its
rows. Notice that contrary to the SQL standard the properties
of columns and rows may be combined by arbitrary Boolean
constructor rather than by conjunction only.30

Types

The algebra of types of Lingua-SQL contains four carriers:

•	 Identifier
•	 Transfer
•	 CompositeE

•	 TypeE,

and besides the constructors already defined for Lingua
contain three groups of new constructors:

1.	 new transfer constructors (“Transfers”),
2.	 selected constructors of row composites needed to con-

struct the rows of default values,
3.	 three type constructors: of creating a one-attribute row,

of adding an attribute to a row, and of creating table type.

Row types are created similarly to record types with the
difference that now the added type must be simple.

Database Values

Database values are defined as pairs consisting of an (intui-
tively understood) record of table values and a subordination
graph (“The subordination of tables”). About databases we
assume additionally the following:

•	 to make a database accessible in a program, its tables
must be assigned to variable identifiers in the current
valuation,

•	 in every state its valuation carries tables of only one data-
base; this database is called the active database.

To describe this mechanism new notions are necessary.
According to our assumptions, we expand the current

domain of simple values and introduce the domains of row
values and table values:

RowVal = {(com, tra) | sort.com = ‘Rq’ and tra.
com = (tt, (‘Boolean’))}
TabVal = {(com, tra) | sort.com = ‘Tq’ and tra.com = (tt,
(‘Boolean’))}.

By a database record we mean a mapping that maps iden-
tifiers into table values:

dbr : DatBasRec = Identifier ⇒ TabVal

Of course, database records are not records in the sense
of “The data”, but only in a set-theoretic sense.

We say that a database record dbr satisfies the subordi-
nation relation identified by a subordination graph sgr, in
symbols

dbr satisfies sgr,
if for every edge (ide-c, ide, ide-p) of the graph, the

tables assigned to ide-c and ide-p are defined, i.e.,

(com-c, tra-c) = dbr.ide-c
(com-p, tra-p) = dbr.ide-p

30  To say the truth, I am not sure if such a generalization has a practi-
cal value.

SN Computer Science (2020) 1:15 	 Page 27 of 31  15

SN Computer Science

and the subordination relation holds, i.e.,

com-c sub[ide] com-p.

By a database value we mean a pair consisting of a data-
base record and a subordination graph that describes the
subordination relations satisfied by that record:

dbv : DbaVal = {(dbr, sgr) | dbr satisfies sgr}.

We may say that for database values, the role of a yoke
is played by the predicate satisfies. Notice, however, that
since a database record caries table values, the tables of the
database satisfy their own yokes.

States

Similarly to that in Lingua, states in Lingua-SQL bind
values with variables and types with type constants. The
general definitions of types and values remain as in “Com-
posites, transfers, yokes, types and values” except for data-
base values (“Database values”). Consequently, the values
in Lingua-SQL, i.e., objects which may be assigned to vari-
able identifiers are all the values of Lingua, and additionally
the values that carry:

1.	 simple SQL data,
2.	 rows,
3.	 tables,
4.	 databases.

Of course, database values are not values, as defined for-
merly, since they are not composed of a data and a type. The
type of a database is implicit in the types of its tables and in
the subordination graph.

In every state several databases may be stored, i.e.,
assigned to identifiers, but only one base may be active at
a time, i.e., the tables of only one base may be assigned to
identifiers in valuations.

For states, I assume the existence of four system
identifiers:

sb-graph	� that binds the subordination graph of the active
base in the environment,

copies	� that binds a finite sets of table names (identi-
fiers) in the valuation,

monitor	� that binds one table in the valuations (the table
displayed on a monitor),

check	� that binds words ‘yes’ and ‘no’ in valuations.

Their role will be explained later. So far, we assume only
that they cannot be used as identifiers of variables, of type

constants, and of procedures. The identifier check is called
the security flag.

The signature of the algebra of denotations of Lingua-
SQL is an extension of the signature of Lingua (“The car-
riers of our algebra of denotations”) by new constructors.
The carriers change due to new SQL values and SQL types.

Denotations and Their Constructors

The subalgebra of expression denotations of all types is
analogous to that in Lingua.

At the level of state-to-state functions, we have a new
domain of transactions. Transactions, similarly to instruc-
tions, are state transformations, but contrary to the former
they are total functions since they do not contain loops and
procedure calls. Moreover, they do not create new tables, but
only modify the existing ones. Their domain is, therefore,
the following:

trd : TrnDen = State ↦ State.

Transactions are regarded as a separate carrier of the alge-
bra of denotations to avoid the use of arbitrary table instruc-
tions in the contexts of transactions.

The largest group of transactions are table modifications
which in a traditional syntax could have the form:

ide : = table-expression(ide)

where on both sides we have the same table named ide.
Transactions include the mechanisms of creating and recov-
ering security copies of databases.

The carrier of instruction denotations is enriched with
new constructors of specific SQL instructions of three
categories,

1.	 row assignments,
2.	 table assignments,
3.	 database instructions.

All constructors of Lingua are still available and apply to the
extended carrier of instruction denotations. This rule con-
cerns, in particular, the constructor of transfer replacement
and the constructors of structural instruction, i.e., sequential
composition, branching, and loop. The constructors of pro-
cedure declaration and procedure call remain unchanged as
well, although now they are defined on extended domains.

A particular role in SQL plays a large group of table
assignments where we distinguish two categories:

1.	 table-modification instruction where on both sides of
the assignment we have the name of the same table; this

	 SN Computer Science (2020) 1:15 15   Page 28 of 31

SN Computer Science

group of instructions comprise the mechanisms known
as CASCADE and RESTRICT,

2.	 table-creation instruction where on the left-hand side of
the instruction we may have a different table name (of
the table that is being created) than on the right-hand
side.

From a mathematical perspective, the first category may
be regarded as a particular case of the second, but denota-
tionally they correspond to two different constructors of the
algebra of denotations and hence also to different construc-
tors of the algebra of syntax.

Independently of the described categorization, table
assignments are split into two further categories according to
two ways of using subordination constraints both described
in Sect. 11.5 of [16]):

1.	 conformist instructions where an execution terminates
with an error message whenever it would lead to a vio-
lation of subordination constraints; this category cor-
responds to the option RESTRICT,

2.	 correcting instructions which in the described situation
introduce such changes into a database that guarantee
the protection of subordination constraints; this category
corresponds to the option CASCADE.

Queries are similar to simple instructions with the differ-
ence that they always create a new table assigned to the sys-
tem-identifier monitor. Consequently, we apply simplified
assignments assign-mo that never violates any constraints
since the transfer of the new value is TT. Of course, I skip
here the whole mechanism of displaying and manipulating
monitors.

Cursors are mechanisms used to retrieve one row after
another from tables. In our model that can be easily defined,
e.g., by adding a column to a table that enumerates its rows.

Views are essentially procedures that call table instruc-
tions. They may be introduced to our model either as prede-
fined instructions or by providing programming mechanisms
of procedures that operate on tables.

Regarding database instructions, I assume that in Lingua-
SQL an initial valuation of program execution may carry
some variables assigned to database values. I assume addi-
tionally that in every initial state of program execution, the
system identifiers are bound to the following default values:

���.��−�����= ∞

���.������= ∞,

���.�������= � (interpreted as no data to be displayed)

���.�����= }���’

With these assumptions, each database program in Lin-
gua-SQL that operates on tables either has to create its own
tables—and a database thereof—or to activate an already
existing database. In Lingua-SQL we have therefore only
two database instructions that operate on tables—activate
and archive—and two that operate on subordination graphs,
which add or remove an edge of a graph.

An Example of a Colloquial Syntax

The colloquial syntax of Lingua-SQL should be as close as
possible to SQL standard. Below just one example of restor-
ing a standard table-variable declaration—which in Lingua-
SQL belongs to colloquial syntax—into its corresponding
concrete-syntax form.

The restoring transformation would change this declara-
tion into a sequence of a table-variable declaration followed
by a database instruction of retting a subordination depend-
ency between tables:

create table Employees as typ_exp ed;
set reference of Employees et Department_Id
to Departments ei

where typ_exp is a metavariable that represents a type
expression:

table-type dat_exp with tra_exp ee

In this scheme, the data expression dat_exp defines data
that stand in the row of default data which in fact means
that it generates this row. In turn, the transfer expression
tra_exp describes the properties of columns and rows. The
table-variable declaration has then the form:

Unfolding the data expression by means of row-creation
and row-expansion constructors and unfolding the transfer

������ ����� ��������� ����

�����������(��)����
��,

���
	
���������(�),

������������(�)����
���,

�����������(�)����
���,

�����	���	_��������(�) ��� ��­�� �����	���	�,

­��­�(�����< ������)

��

������ ����� ��������� ��

�����-���� ���_��� ���� ���_��� ��

��

SN Computer Science (2020) 1:15 	 Page 29 of 31  15

SN Computer Science

expression with transfer-expression constructors, we get the
following concrete version of our colloquial declaration:

Of course, varchar(20), varchar(9),… are the
names of appropriate predicates. Notice that in this exam-
ple one “syntax unite” from the colloquial level is trans-
formed into a sequential composition of a declaration with
an instruction.

Remarks About a Possible Implementation
of Lingua‑SQL

Typical Application Programming Interfaces (API) for SQL
have been created for programming languages such as, e.g.,
C, PHP, Perl, and Phyton. Each of these programming envi-
ronments constitutes a programming language equipped

with the mechanisms that allow to run procedures of a cer-
tain existing database engine. In the case of Lingua-SQL,

such a situation would not be acceptable. Our language must
be based on a dedicated SQL engine with a denotational
model, and in the future, maybe, with a dedicated implemen-
tation. Such an approach is necessary, if we want to provide
sound program-construction rules for Lingua-SQL. But,
of course, its functionality and syntax should conform—as
much as possible—to some concrete standard of SQL. It is
also worth mentioning that Lingua-SQL is a strong-type
language, whereas SQL is not very much so.

table-type dat_exp with tra_exp ee
ed

Unfolding the data expression by means of row-creation and row-expansion constructors and unfolding the
transfer expression with transfer-expression constructors we get the following concrete version of our colloquial
declaration:
create table Employees as (the beginning of the declaration)

table-type (the beginning of type expression)
expand-row (the beginning of data expression)

expand-row
expand-row

expand-row
row Name val empty-word ee

by Position val empty-word ee
by Salary val 0 ee

by Bonus val 0 ee
by Department_Id by empty-number ee (the end of data expression)

with (the beginning of transfer expression (yoke expression)
all

varchar(20)(row.Name) and
not-null(row.Name) and
varchar(9)(row.Position) and
number(5)(row.Salary) and
number(4)(row.Bonus) and
number(3)(row.Department_Id) and
row.Bonus < row.Salary

ee (the end of transfer expression (yoke expression)
ee (the end of type expression)

ed ; (the end of declaration)

set reference of Employees et Department_Id to Departments ei

	 SN Computer Science (2020) 1:15 15   Page 30 of 31

SN Computer Science

What Remains to be Done

Even though [16] is already of a considerable size, the
majority of subjects has been only sketched. Below is a pre-
liminary list of subjects which could be developed further.
This list is certainly not complete.

The Development of Lingua

1.	 An extension of Lingua to some “practical” language,
say Lingua-α, where preliminary programming experi-
ments could be performed. Such a language should
cover in particular:

	 1.1.	 The mechanisms of object programming which
in [16] have been only sketched in Sect. 9.

	 1.2.	 Some more specific data types, e.g., trees that in
the Polish version of [16] have been sketched in
Annex 1.

	 1.3.	 The enrichment of SQL mechanisms.
	 1.4.	 The elaboration of HTML scripts.

2.	 The development of tools for correct programs’ develop-
ment in Lingua-α:

	 2.1.	 The extension of the languages of conditions and
thesis sketched in Sect. 8 of [16].

	 2.2.	 Sound program-construction rules for the ex-
tended language.

3.	 A user manual for Lingua-α. This task could also con-
tribute to a methodology of writing programmer’s manu-
als for languages with denotational semantics.31

4.	 A programmer’s environment for Lingua-α:

	 4.1.	 An interpreter or a compiler. To make this inter-
preter/compiler maximally independent of pos-
sible errors in the language used to build it, some
basic core could be coded in such a language
(e.g., in Python), and the remaining part may be
written using this basic core. This could also be
the first experiment in using our language.

	 4.2.	 An editor of programs supporting the construc-
tion of correct programs with the use of ear-
lier developed program construction rules (see
“Many-sorted algebras”)

	 4.3.	 An adaptation of an existing theorem prover for
proving metaconditions (the properties of condi-
tions) described in Sect. 8.4.2 of [16] which is
necessary for the use of program-construction
rules.

5.	 Preliminary experiments with programming in
Lingua-α:

	 5.1.	 Microprograms due to their relatively small vol-
ume and a very critical correctness issue.

	 5.2.	 Simple SQL applications due to a restricted avail-
ability of SQL tools in Lingua-α at least at the
beginning of the project.

This is, of course, only a preliminary sketch of a pro-
ject which—in the case of realizations—would probably be
modified and further developed.

The last problem which should be mentioned here is the
dependency of the correctness of Lingua compiler of the
correctness of the compiler of the language, say Python,
in which Lingua compiler would be written. To solve that
problem completely one should validate all the software
layers between Lingua code and a machine code. At the
moment this would be an obviously unrealistic task. So far,
we cannot free ourselves from errors lying “below” the Lin-
gua code. On the other hand, it seems true that very many
errors in programs are made at the level of the source code.
Such error may be—at least to some extent—eliminated in
Lingua.

The Development of a Software Environment
for Language Designers

Such an environment should consist of:

1.	 An editor of the definitions of denotations’ constructors.
2.	 A generator of the grammar of abstract syntax from such

definitions.
3.	 An editor supporting language designers in developing

concrete syntax grammar from abstract syntax grammar.
4.	 An editor/generator of a transformation restoring col-

loquial syntax to abstract syntax.
5.	 A generator of a parser from colloquial syntax to abstract

syntax.
6.	 A generator of an interpreter of the language.

If such an environment is created before Lingua-α, it
could be used in the creation of that language.

31  Denotational models should provide an opportunity for the revi-
sion of current practices seen in the manuals of programming lan-
guages. New practices should on one hand base on denotational mod-
els, but on the other not assume that today’s readers are acquainted
with it. A manual should provide some basic knowledge and notation
needed to understand the definition of a programming language writ-
ten in a new style. At the same time—I strongly believe on that—it
should be written for professional programmers rather than for ama-
teurs. The role of a manual is not to teach the skills of programming.
Such textbooks are, of course, necessary, but they should tell the
readers what the programming is about, rather than the technicalities
of a concrete language. An experiment in writing a user manual of
Lingua is described in [15].

SN Computer Science (2020) 1:15 	 Page 31 of 31  15

SN Computer Science

Two Basic Research Problems

Independently of the tasks mentioned above, two important
research problems are worthy of consideration.

The first concerns the extension of our model by the
mechanisms of concurrency. Fully denotational models of
concurrence are not known today, although there are some
attempts to form “semi-denotational” models of these mech-
anisms, as, e.g., in [2].

The second problem has not been probably tackled at all
and concerns the construction of semi-formal languages for
the description of user-oriented specifications of programs.
So far, all approaches to program correctness—including
mine—concentrate on the compatibility of program code
with its formal specification. It does not exhaust the reliabil-
ity problem in the IT industry, because many problems are
due to poor communication between a designer of a system
and its user. Most probably, many area-oriented languages
of specifications would be needed.

Compliance with ethical standards 

Conflict of interest  The author declares that he has no conflict of inter-
est.

Open Access  This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat​iveco​
mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate
credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

References

	 1.	 Ahrent W, Beckert B, Bubel R, Hähnle R, Schmitt PH, Ulbrich
M, editors. Deductive software verification—the key book; from
theory to practice. Lecture notes in computer science, 10001. New
York: Springer; 2016.

	 2.	 Binsbergena LT, Mosses PD, Sculthorped CN. Executable com-
ponent-based semantics. J Logical Algebraic Methods Program.
2019;103:184–212.

	 3.	 Bjørner D, Jones BC. The Vienna development method: the meta-
language. Upper Saddle River: Prentice Hall International; 1982.

	 4.	 Bjørner D, Oest ON, editors. Towards a formal description of
Ada. Lecture notes of computer science, 98. New York: Springer
Verlag; 1980.

	 5.	 Blikle A. Algorithmically definable functions. A contribution
towards the semantics of programming languages, Dissertationes
Mathematicae, LXXXV, PWN, Warszawa. 1971.

	 6.	 Blikle A. Equational languages. Inf Control. 1972;21(2):134–47.
	 7.	 Blikle A. Toward mathematical structured programming, formal

description of programming concepts. In: Neuhold EJ, editors.
Proc. IFIP Working Conf. St. Andrews, N.B., Canada 1977. North
Holland, Amsterdam; 1978, pp. 183–2012.

	 8.	 Blikle A. On correct program development. In: Proceedings of the
4th international conference on software engineering, München,
September 17–19, 1979. IEEE Computer Society, pp. 164–73.

	 9.	 Blikle A. On the development of correct specified programs. IEEE
Trans Soft Eng. 1981;SE-7(5):519–27.

	10.	 Andrzej Blikle. The clean termination of iterative programs. Acta
Inform. 1981;16:199–217.

	11.	 Blikle A. MetaSoft primer—towards a metalanguage for applied
denotational semantics, Lecture notes in computer science. New
York: Springer Verlag; 1987.

	12.	 Blikle Andrzej, Denotational Engineering or from Denotations
to Syntax, red. D. Bjørner, C.B. Jones, M. Mac an Airchinnigh,
E.J. Neuhold, VDM: A Formal Method at Work, Lecture notes in
Computer Science 252, Springer, Berlin 1987.

	13.	 Blikle A. Three-valued predicates for software specification and
validation. In: VDM’88, VDM: the way ahead. Proceedings of
2nd, VDM-Europe symposium, Dublin 1988, Lecture notes of
computer science, New York: Springer; 1988, pp 243–66.

	14.	 Blikle A. Denotational engineering. Sci Comput Program.
1989;12:207–53.

	15.	 Blikle A. An experiment with a user manual based on a denota-
tional semantics. https​://doi.org/10.13140​/rg.2.2.23355​.67366​.

	16.	 Blikle A, Chrząstowski-Wachtel P. A denotational engineering of
programming languages—to make software systems reliable and
user manuals clear, complete and unambiguous. 2019. https​://doi.
org/10.13140​/rg.2.2.27499​.39201​/3.

	17.	 Blikle A, Tarlecki A. Naive denotational semantics. In: Mason
REA, editor. Information processing 83. North-Holland: Elsevier
Science Publishers; 1983.

	18.	 Branquart P, Luis G, Wodon P. An analytical description of
CHILL, the CCITT high-level language. Lecture notes in com-
puter science, 128. New York: Springer-Verlag; 1982.

	19.	 Chomsky N. Context-free grammar and pushdown storage. Quar-
terly Progress Report 65, MIT Research Laboratories of Electron-
ics, Quarterly Report. 1962. pp. 187–94.

	20.	 Ginsburg S. The mathematical theory of context-free languages.
New York: McGraw-Hill; 1966.

	21.	 Goguen JA, Thatcher JW, Wagner EG, Wright JB. Initial alge-
bra semantics and continuous algebras. J Assoc Comput Mach.
1977;24:68–95.

	22.	 Gordon MJC. The denotational description of programming lan-
guages. Berlin: Springer Verlag; 1979.

	23.	 Hoare CAR. An axiomatic basis for computer programming.
Commun ACM. 1969;12:576–83.

	24.	 Kleene SC. Introduction to metamathematics. North Holland 1952
(later republished in the years 1957, 59, 62, 64, 67, 71).

	25.	 McCarthy J. A basis for a mathematical theory of computation.
In: Brawffort P, Hirschberg D, editors. Western joint computer
conference, May 1961 later republished in Computer program-
ming and formal systems. North Holland; 1967.

	26.	 Naur P (editors). Report on the algorithmic language ALGOL60.
Communications of the association for computing machinery,
Homepage archive Volume 3 Issue 5, 1960. pp 299–314.

	27.	 Stoy JE. Denotational semantics: the scott-strachey approach to
programming language theory. Cambridge: MIT Press; 1977.

	28.	 Scott D. Strachey C. Towards a mathematical semantics of com-
puter languages. Technical Monograph PRG-6, Oxford University,
Oxford, 1971.

	29.	 Turing A. On checking a large routine. Report of a conference on
high-speed calculating machines, University Mathematical Labo-
ratory, Cambridge. 1949, pp. 67–69.

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.13140/rg.2.2.23355.67366
https://doi.org/10.13140/rg.2.2.27499.39201/3
https://doi.org/10.13140/rg.2.2.27499.39201/3

	An Experiment with Denotational Semantics
	Abstract
	Introduction
	Reversing the Traditional Order of Things
	What is in the Paper
	What this Paper is Not Offering
	What is New in My Approach

	Mathematical Preliminaries
	Notational Conventions
	Many-Sorted Algebras
	Equational Grammars
	Abstract Errors
	Three-Valued Propositional Calculus

	General Remarks About Denotational Models
	Why Do We Need Denotational Models?
	Five Steps to a Denotational Model
	Two Layers of a Programming Language

	The Applicative Layer of Lingua
	The Data
	Composites, Transfers, Yokes, Types, and Values
	Expressions in General
	Data Expressions
	Transfer expressions
	Type expressions
	The Concrete Syntax of Expressions
	The Colloquial Syntax of Expressions

	The imperative Layer of the Language
	Some Auxiliary Concepts
	Instructions
	Variable Declarations and Type Definitions
	Procedures
	The Execution of a Procedure Call
	Preambles and Programs
	The Carriers of Our Algebra of Denotations

	Lingua-SQL
	General Assumptions About the Model
	Data, Bodies, and Composites
	The Subordination of Tables
	Transfers
	Types
	Database Values
	States
	Denotations and Their Constructors
	An Example of a Colloquial Syntax
	Remarks About a Possible Implementation of Lingua-SQL

	What Remains to be Done
	The Development of Lingua
	The Development of a Software Environment for Language Designers
	Two Basic Research Problems

	References

